|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM360917518 |
003 |
DE-627 |
005 |
20231226084037.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202305409
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1203.xml
|
035 |
|
|
|a (DE-627)NLM360917518
|
035 |
|
|
|a (NLM)37592888
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Vaňo, Viliam
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Evidence of Nodal Superconductivity in Monolayer 1H-TaS2 with Hidden Order Fluctuations
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 09.11.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Unconventional superconductors represent one of the fundamental directions in modern quantum materials research. In particular, nodal superconductors are known to appear naturally in strongly correlated systems, including cuprate superconductors and heavy-fermion systems. Van der Waals materials hosting superconducting states are well known, yet nodal monolayer van der Waals superconductors have remained elusive. Here, using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments, it is shown that pristine monolayer 1H-TaS2 realizes a nodal superconducting state. Non-magnetic disorder drives the nodal superconducting state to a conventional gapped s-wave state. Furthermore, many-body excitations emerge close to the gap edge, signalling a potential unconventional pairing mechanism. The results demonstrate the emergence of nodal superconductivity in a van der Waals monolayer, providing a building block for van der Waals heterostructures exploiting unconventional superconducting states
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a monolayer transition metal dichalcogenide
|
650 |
|
4 |
|a nodal superconductivity
|
650 |
|
4 |
|a scanning tunneling microscopy (STM)
|
650 |
|
4 |
|a scanning tunneling spectroscopy
|
650 |
|
4 |
|a unconventional superconductivity
|
650 |
|
4 |
|a van der Waals materials
|
700 |
1 |
|
|a Ganguli, Somesh Chandra
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Amini, Mohammad
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Linghao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Khosravian, Maryam
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Guangze
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kezilebieke, Shawulienu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lado, Jose L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liljeroth, Peter
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 45 vom: 18. Nov., Seite e2305409
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:45
|g day:18
|g month:11
|g pages:e2305409
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202305409
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 45
|b 18
|c 11
|h e2305409
|