Metal-Like Stretchable Nanocomposite Using Locally-Bundled Nanowires for Skin-Mountable Devices
© 2023 Wiley-VCH GmbH.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 44 vom: 01. Nov., Seite e2303458 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2023
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article intrinsically soft devices skin electronics stretchable conductors stretchable metallic nanocomposites wearable devices |
| Zusammenfassung: | © 2023 Wiley-VCH GmbH. Stretchable conductive nanocomposites have been intensively studied for wearable bioelectronics. However, development of nanocomposites that simultaneously feature metal-like conductivity(> 100 000 S cm-1 ) and high stretchability (> 100%) for high-performance skin-mountable devices is still extremely challenging. Here a material strategy for such a nanocomposite is presented by using local bundling of silver nanowires stabilized with dual ligands (i.e., 1-propanethiols and 1-decanethiols). When the nanocomposite is solidified via solvent evaporation under a highly humid condition, the nanowires in the organic solution are bundled and stabilized. The resulting locally-bundled nanowires lower contact resistance while maintain their percolation network, leading to high conductivity. Dual ligands of 1-propanethiol and 1-decanethiol further boost up the conductivity. As a result, a nanocomposite with both high conductivity of ≈122,120 S cm-1 and high stretchability of ≈200% is obtained. Such superb electrical and mechanical properties are critical for various applications in skin-like electronics, and herein, a wearable thermo-stimulation device is demonstrated |
|---|---|
| Beschreibung: | Date Revised 02.11.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202303458 |