IntrinsicNGP : Intrinsic Coordinate Based Hash Encoding for Human NeRF

Recently, many works have been proposed to use the neural radiance field for novel view synthesis of human performers. However, most of these methods require hours of training, making them difficult for practical use. To address this challenging problem, we propose IntrinsicNGP, which can be trained...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 15. Juli, Seite 5679-5692
1. Verfasser: Peng, Bo (VerfasserIn)
Weitere Verfasser: Hu, Jun, Zhou, Jingtao, Gao, Xuan, Zhang, Juyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM360892892
003 DE-627
005 20240703232357.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3306078  |2 doi 
028 5 2 |a pubmed24n1458.xml 
035 |a (DE-627)NLM360892892 
035 |a (NLM)37590116 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peng, Bo  |e verfasserin  |4 aut 
245 1 0 |a IntrinsicNGP  |b Intrinsic Coordinate Based Hash Encoding for Human NeRF 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.07.2024 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Recently, many works have been proposed to use the neural radiance field for novel view synthesis of human performers. However, most of these methods require hours of training, making them difficult for practical use. To address this challenging problem, we propose IntrinsicNGP, which can be trained from scratch and achieve high-fidelity results in a few minutes with videos of a human performer. To achieve this goal, we introduce a continuous and optimizable intrinsic coordinate instead of the original explicit euclidean coordinate in the hash encoding module of InstantNGP. With this novel intrinsic coordinate, IntrinsicNGP can aggregate interframe information for dynamic objects using proxy geometry shapes. Moreover, the results trained with the given rough geometry shapes can be further refined with an optimizable offset field based on the intrinsic coordinate. Extensive experimental results on several datasets demonstrate the effectiveness and efficiency of IntrinsicNGP. We also illustrate the ability of our approach to edit the shape of reconstructed objects 
650 4 |a Journal Article 
700 1 |a Hu, Jun  |e verfasserin  |4 aut 
700 1 |a Zhou, Jingtao  |e verfasserin  |4 aut 
700 1 |a Gao, Xuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Juyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 8 vom: 15. Juli, Seite 5679-5692  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:8  |g day:15  |g month:07  |g pages:5679-5692 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3306078  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 8  |b 15  |c 07  |h 5679-5692