Ericoid shrub encroachment shifts aboveground-belowground linkages in three peatlands across Europe and Western Siberia

© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 29(2023), 23 vom: 14. Dez., Seite 6772-6793
1. Verfasser: Buttler, Alexandre (VerfasserIn)
Weitere Verfasser: Bragazza, Luca, Laggoun-Défarge, Fatima, Gogo, Sebastien, Toussaint, Marie-Laure, Lamentowicz, Mariusz, Chojnicki, Bogdan H, Słowiński, Michał, Słowińska, Sandra, Zielińska, Małgorzata, Reczuga, Monika, Barabach, Jan, Marcisz, Katarzyna, Lamentowicz, Łukasz, Harenda, Kamila, Lapshina, Elena, Gilbert, Daniel, Schlaepfer, Rodolphe, Jassey, Vincent E J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Sphagnum moss dissolved organic C enzyme microorganism open-top chamber warming phenolic compound vascular plant water table Soil mehr... Water 059QF0KO0R
LEADER 01000naa a22002652 4500
001 NLM360780210
003 DE-627
005 20231226083737.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16904  |2 doi 
028 5 2 |a pubmed24n1202.xml 
035 |a (DE-627)NLM360780210 
035 |a (NLM)37578632 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Buttler, Alexandre  |e verfasserin  |4 aut 
245 1 0 |a Ericoid shrub encroachment shifts aboveground-belowground linkages in three peatlands across Europe and Western Siberia 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.11.2023 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a In northern peatlands, reduction of Sphagnum dominance in favour of vascular vegetation is likely to influence biogeochemical processes. Such vegetation changes occur as the water table lowers and temperatures rise. To test which of these factors has a significant influence on peatland vegetation, we conducted a 3-year manipulative field experiment in Linje mire (northern Poland). We manipulated the peatland water table level (wet, intermediate and dry; on average the depth of the water table was 17.4, 21.2 and 25.3 cm respectively), and we used open-top chambers (OTCs) to create warmer conditions (on average increase of 1.2°C in OTC plots compared to control plots). Peat drying through water table lowering at this local scale had a larger effect than OTC warming treatment per see on Sphagnum mosses and vascular plants. In particular, ericoid shrubs increased with a lower water table level, while Sphagnum decreased. Microclimatic measurements at the plot scale indicated that both water-level and temperature, represented by heating degree days (HDDs), can have significant effects on the vegetation. In a large-scale complementary vegetation gradient survey replicated in three peatlands positioned along a transitional oceanic-continental and temperate-boreal (subarctic) gradient (France-Poland-Western Siberia), an increase in ericoid shrubs was marked by an increase in phenols in peat pore water, resulting from higher phenol concentrations in vascular plant biomass. Our results suggest a shift in functioning from a mineral-N-driven to a fungi-mediated organic-N nutrient acquisition with shrub encroachment. Both ericoid shrub encroachment and higher mean annual temperature in the three sites triggered greater vascular plant biomass and consequently the dominance of decomposers (especially fungi), which led to a feeding community dominated by nematodes. This contributed to lower enzymatic multifunctionality. Our findings illustrate mechanisms by which plants influence ecosystem responses to climate change, through their effect on microbial trophic interactions 
650 4 |a Journal Article 
650 4 |a Sphagnum moss 
650 4 |a dissolved organic C 
650 4 |a enzyme 
650 4 |a microorganism 
650 4 |a open-top chamber warming 
650 4 |a phenolic compound 
650 4 |a vascular plant 
650 4 |a water table 
650 7 |a Soil  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Bragazza, Luca  |e verfasserin  |4 aut 
700 1 |a Laggoun-Défarge, Fatima  |e verfasserin  |4 aut 
700 1 |a Gogo, Sebastien  |e verfasserin  |4 aut 
700 1 |a Toussaint, Marie-Laure  |e verfasserin  |4 aut 
700 1 |a Lamentowicz, Mariusz  |e verfasserin  |4 aut 
700 1 |a Chojnicki, Bogdan H  |e verfasserin  |4 aut 
700 1 |a Słowiński, Michał  |e verfasserin  |4 aut 
700 1 |a Słowińska, Sandra  |e verfasserin  |4 aut 
700 1 |a Zielińska, Małgorzata  |e verfasserin  |4 aut 
700 1 |a Reczuga, Monika  |e verfasserin  |4 aut 
700 1 |a Barabach, Jan  |e verfasserin  |4 aut 
700 1 |a Marcisz, Katarzyna  |e verfasserin  |4 aut 
700 1 |a Lamentowicz, Łukasz  |e verfasserin  |4 aut 
700 1 |a Harenda, Kamila  |e verfasserin  |4 aut 
700 1 |a Lapshina, Elena  |e verfasserin  |4 aut 
700 1 |a Gilbert, Daniel  |e verfasserin  |4 aut 
700 1 |a Schlaepfer, Rodolphe  |e verfasserin  |4 aut 
700 1 |a Jassey, Vincent E J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 29(2023), 23 vom: 14. Dez., Seite 6772-6793  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:23  |g day:14  |g month:12  |g pages:6772-6793 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16904  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 23  |b 14  |c 12  |h 6772-6793