Transferable Time-Series Forecasting Under Causal Conditional Shift

This paper focuses on the problem of semi-supervised domain adaptation for time-series forecasting, which is underexplored in literature, despite being often encountered in practice. Existing methods on time-series domain adaptation mainly follow the paradigm designed for static data, which cannot h...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 4 vom: 15. März, Seite 1932-1949
1. Verfasser: Li, Zijian (VerfasserIn)
Weitere Verfasser: Cai, Ruichu, Fu, Tom Z J, Hao, Zhifeng, Zhang, Kun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM360660290
003 DE-627
005 20240307231948.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3304354  |2 doi 
028 5 2 |a pubmed24n1319.xml 
035 |a (DE-627)NLM360660290 
035 |a (NLM)37566506 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zijian  |e verfasserin  |4 aut 
245 1 0 |a Transferable Time-Series Forecasting Under Causal Conditional Shift 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper focuses on the problem of semi-supervised domain adaptation for time-series forecasting, which is underexplored in literature, despite being often encountered in practice. Existing methods on time-series domain adaptation mainly follow the paradigm designed for static data, which cannot handle domain-specific complex conditional dependencies raised by data offset, time lags, and variant data distributions. In order to address these challenges, we analyze variational conditional dependencies in time-series data and find that the causal structures are usually stable among domains, and further raise the causal conditional shift assumption. Enlightened by this assumption, we consider the causal generation process for time-series data and propose an end-to-end model for the semi-supervised domain adaptation problem on time-series forecasting. Our method can not only discover the Granger-Causal structures among cross-domain data but also address the cross-domain time-series forecasting problem with accurate and interpretable predicted results. We further theoretically analyze the superiority of the proposed method, where the generalization error on the target domain is bounded by the empirical risks and by the discrepancy between the causal structures from different domains. Experimental results on both synthetic and real data demonstrate the effectiveness of our method for the semi-supervised domain adaptation method on time-series forecasting 
650 4 |a Journal Article 
700 1 |a Cai, Ruichu  |e verfasserin  |4 aut 
700 1 |a Fu, Tom Z J  |e verfasserin  |4 aut 
700 1 |a Hao, Zhifeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Kun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 4 vom: 15. März, Seite 1932-1949  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:4  |g day:15  |g month:03  |g pages:1932-1949 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3304354  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 4  |b 15  |c 03  |h 1932-1949