Advanced Multilayered Electrode with Planar Building Blocks Structure for High-Performance Lithium-Ion Storage
© 2023 Wiley-VCH GmbH.
| Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 47 vom: 29. Nov., Seite e2305317 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , , , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2023
|
| Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
| Sujets: | Journal Article black phosphorus graphdiyne lithium-ion batteries multi-level layered electrodes planar stacking |
| Résumé: | © 2023 Wiley-VCH GmbH. To achieve the high-performance of lithium-ion battery, the optimization of electrode materials has generally been considered as the one of the important methods. But most of those works pay attention to the new materials preparation or interface modification rather than the structural innovation. Here, an advanced electrode (GDY/BP/GDY-E) with multilevel layered architecture constructed by planar building blocks stacking structure has been designed and fabricated to explore the structure design of the electrode. This new structure is assembled by graphdiyne (GDY) and black phosphorus (BP) in parallel to form a building block (GDY/BP/GDY). The electric fields between the two GDY sides of the planar building block structure contribute to the superior migration dynamics of lithium ions and desirable pseudocapacitance behavior. Meanwhile, the planar stacking structure of GDY/BP/GDY can efficiently inhibit volume expansion of BP and a series of parasitic reactions of electrolytes during the long-term cycling. The advanced GDY/BP/GDY-E exhibits excellent high-rate performance (1418.8 mAh g-1 at 0.1 A g-1 ) and cycling stability (391.7 mAh g-1 after 5000 cycles at 10 A g-1 ). Such structural design of electrode materials shows a new way to develop high-performance electrodes |
|---|---|
| Description: | Date Revised 24.11.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202305317 |