Revisiting AUC-Oriented Adversarial Training With Loss-Agnostic Perturbations

The Area Under the ROC curve (AUC) is a popular metric for long-tail classification. Many efforts have been devoted to AUC optimization methods in the past decades. However, little exploration has been done to make them survive adversarial attacks. Among the few exceptions, AdAUC presents an early t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 10. Dez., Seite 15494-15511
1. Verfasser: Yang, Zhiyong (VerfasserIn)
Weitere Verfasser: Xu, Qianqian, Hou, Wenzheng, Bao, Shilong, He, Yuan, Cao, Xiaochun, Huang, Qingming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM360611990
003 DE-627
005 20250305035510.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3303934  |2 doi 
028 5 2 |a pubmed25n1201.xml 
035 |a (DE-627)NLM360611990 
035 |a (NLM)37561614 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Zhiyong  |e verfasserin  |4 aut 
245 1 0 |a Revisiting AUC-Oriented Adversarial Training With Loss-Agnostic Perturbations 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The Area Under the ROC curve (AUC) is a popular metric for long-tail classification. Many efforts have been devoted to AUC optimization methods in the past decades. However, little exploration has been done to make them survive adversarial attacks. Among the few exceptions, AdAUC presents an early trial for AUC-oriented adversarial training with a convergence guarantee. This algorithm generates the adversarial perturbations globally for all the training examples. However, it implicitly assumes that the attackers must know in advance that the victim is using an AUC-based loss function and training technique, which is too strong to be met in real-world scenarios. Moreover, whether a straightforward generalization bound for AdAUC exists is unclear due to the technical difficulties in decomposing each adversarial example. By carefully revisiting the AUC-orient adversarial training problem, we present three reformulations of the original objective function and propose an inducing algorithm. On top of this, we can show that: 1) Under mild conditions, AdAUC can be optimized equivalently with score-based or instance-wise-loss-based perturbations, which is compatible with most of the popular adversarial example generation methods. 2) AUC-oriented AT does have an explicit error bound to ensure its generalization ability. 3) One can construct a fast SVRG-based gradient descent-ascent algorithm to accelerate the AdAUC method. Finally, the extensive experimental results show the performance and robustness of our algorithm in five long-tail datasets 
650 4 |a Journal Article 
700 1 |a Xu, Qianqian  |e verfasserin  |4 aut 
700 1 |a Hou, Wenzheng  |e verfasserin  |4 aut 
700 1 |a Bao, Shilong  |e verfasserin  |4 aut 
700 1 |a He, Yuan  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 10. Dez., Seite 15494-15511  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:10  |g month:12  |g pages:15494-15511 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3303934  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 10  |c 12  |h 15494-15511