Metal-Mediated DNA Adsorption on Carboxylated, Hydroxylated, and Hydrogenated Nanodiamonds

Nanodiamonds (NDs) have attracted considerable attention owing to their quantum properties and versatility in biological applications. In this study, we systematically investigated the adsorption of DNA oligonucleotides onto NDs with three types of surface groups: carboxylated (COOH-), hydroxylated...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 33 vom: 22. Aug., Seite 11596-11602
1. Verfasser: Zandieh, Mohamad (VerfasserIn)
Weitere Verfasser: Liu, Juewen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Nanodiamonds hydroxide ion 9159UV381P DNA 9007-49-2
Beschreibung
Zusammenfassung:Nanodiamonds (NDs) have attracted considerable attention owing to their quantum properties and versatility in biological applications. In this study, we systematically investigated the adsorption of DNA oligonucleotides onto NDs with three types of surface groups: carboxylated (COOH-), hydroxylated (OH-), and hydrogenated (H-). Among them, only the H-NDs showed fluorescence quenching property that is useful for real-time DNA adsorption kinetic studies. The effect of common metal ions on DNA adsorption was studied. In the presence of Na+, the order of DNA adsorption efficiency was H- > OH- > COOH-, whereas all the NDs showed a similar DNA adsorption efficiency in the presence of divalent metal ions such as Ca2+ and Zn2+. Desorption studies revealed that hydrogen bonding and metal-mediated interactions were dominant for the adsorption of DNA, and the H-NDs exhibited extraordinarily tight DNA adsorption. Finally, a fluorescently labeled DNA was adsorbed on NDs for DNA detection, and the COOH-NDs had the highest target specificity, and a detection limit of 1.4 nM was achieved. This study indicates the feasibility of using metal ions to mediate the physical adsorption of DNA to NDs and compares various NDs with graphene oxide for fundamental understanding
Beschreibung:Date Completed 23.08.2023
Date Revised 24.08.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c01066