Reverse Engineering of Generative Models : Inferring Model Hyperparameters From Generated Images

State-of-the-art (SOTA) Generative Models (GMs) can synthesize photo-realistic images that are hard for humans to distinguish from genuine photos. Identifying and understanding manipulated media are crucial to mitigate the social concerns on the potential misuse of GMs. We propose to perform reverse...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 02. Dez., Seite 15477-15493
1. Verfasser: Asnani, Vishal (VerfasserIn)
Weitere Verfasser: Yin, Xi, Hassner, Tal, Liu, Xiaoming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM360310567
003 DE-627
005 20231226082736.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3301451  |2 doi 
028 5 2 |a pubmed24n1200.xml 
035 |a (DE-627)NLM360310567 
035 |a (NLM)37531306 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Asnani, Vishal  |e verfasserin  |4 aut 
245 1 0 |a Reverse Engineering of Generative Models  |b Inferring Model Hyperparameters From Generated Images 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a State-of-the-art (SOTA) Generative Models (GMs) can synthesize photo-realistic images that are hard for humans to distinguish from genuine photos. Identifying and understanding manipulated media are crucial to mitigate the social concerns on the potential misuse of GMs. We propose to perform reverse engineering of GMs to infer model hyperparameters from the images generated by these models. We define a novel problem, "model parsing", as estimating GM network architectures and training loss functions by examining their generated images - a task seemingly impossible for human beings. To tackle this problem, we propose a framework with two components: a Fingerprint Estimation Network (FEN), which estimates a GM fingerprint from a generated image by training with four constraints to encourage the fingerprint to have desired properties, and a Parsing Network (PN), which predicts network architecture and loss functions from the estimated fingerprints. To evaluate our approach, we collect a fake image dataset with 100 K images generated by 116 different GMs. Extensive experiments show encouraging results in parsing the hyperparameters of the unseen models. Finally, our fingerprint estimation can be leveraged for deepfake detection and image attribution, as we show by reporting SOTA results on both the deepfake detection (Celeb-DF) and image attribution benchmarks 
650 4 |a Journal Article 
700 1 |a Yin, Xi  |e verfasserin  |4 aut 
700 1 |a Hassner, Tal  |e verfasserin  |4 aut 
700 1 |a Liu, Xiaoming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 02. Dez., Seite 15477-15493  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:02  |g month:12  |g pages:15477-15493 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3301451  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 02  |c 12  |h 15477-15493