Isolating Signals in Passive Non-Line-of-Sight Imaging using Spectral Content

In real-life passive non-line-of-sight (NLOS) imaging there is an overwhelming amount of undesired scattered radiance, called clutter, that impedes reconstruction of the desired NLOS scene. This paper explores using the spectral domain of the scattered light field to separate the desired scattered r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2023) vom: 02. Aug.
1. Verfasser: Hashemi, Connor (VerfasserIn)
Weitere Verfasser: Avelar, Rafael, Leger, James
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM360310559
003 DE-627
005 20240212231856.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3301336  |2 doi 
028 5 2 |a pubmed24n1289.xml 
035 |a (DE-627)NLM360310559 
035 |a (NLM)37531305 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hashemi, Connor  |e verfasserin  |4 aut 
245 1 0 |a Isolating Signals in Passive Non-Line-of-Sight Imaging using Spectral Content 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In real-life passive non-line-of-sight (NLOS) imaging there is an overwhelming amount of undesired scattered radiance, called clutter, that impedes reconstruction of the desired NLOS scene. This paper explores using the spectral domain of the scattered light field to separate the desired scattered radiance from the clutter. We propose two techniques: The first separates the multispectral scattered radiance into a collection of objects each with their own uniform color. The objects which correspond to clutter can then be identified and removed based on how well they can be reconstructed using NLOS imaging algorithms. This technique requires very few priors and uses off-the-shelf algorithms. For the second technique, we derive and solve a convex optimization problem assuming we know the desired signal's spectral content. This method is quicker and can be performed with fewer spectral measurements. We demonstrate both techniques using realistic scenarios. In the presence of clutter that is 50 times stronger than the desired signal, the proposed reconstruction of the NLOS scene is 23 times more accurate than typical reconstructions and 5 times more accurate than using the leading clutter rejection method 
650 4 |a Journal Article 
700 1 |a Avelar, Rafael  |e verfasserin  |4 aut 
700 1 |a Leger, James  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2023) vom: 02. Aug.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:02  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3301336  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 02  |c 08