A spatio-temporal statistical model to analyze COVID-19 spread in the USA

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 11-12 vom: 01., Seite 2310-2329
1. Verfasser: Rawat, Siddharth (VerfasserIn)
Weitere Verfasser: Deb, Soudeep
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Bayesian analysis Coronavirus Gibbs sampling epidemiology pandemic
LEADER 01000caa a22002652 4500
001 NLM360293433
003 DE-627
005 20240930232101.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1970122  |2 doi 
028 5 2 |a pubmed24n1553.xml 
035 |a (DE-627)NLM360293433 
035 |a (NLM)37529573 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rawat, Siddharth  |e verfasserin  |4 aut 
245 1 2 |a A spatio-temporal statistical model to analyze COVID-19 spread in the USA 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Coronavirus pandemic has affected the whole world extensively and it is of immense importance to understand how the disease is spreading. In this work, we provide evidence of spatial dependence in the pandemic data and accordingly develop a new statistical technique that captures the spatio-temporal dependence pattern of the COVID-19 spread appropriately. The proposed model uses a separable Gaussian spatio-temporal process, in conjunction with an additive mean structure and a random error process. The model is implemented through a Bayesian framework, thereby providing a computational advantage over the classical way. We use state-level data from the United States of America in this study. We show that a quadratic trend pattern is most appropriate in this context. Interestingly, the population is found not to affect the numbers significantly, whereas the number of deaths in the previous week positively affects the spread of the disease. Residual diagnostics establish that the model is adequate enough to understand the spatio-temporal dependence pattern in the data. It is also shown to have superior predictive power than other spatial and temporal models. In fact, we show that the proposed approach can predict well for both short term (1 week) and long term (up to three months) 
650 4 |a Journal Article 
650 4 |a Bayesian analysis 
650 4 |a Coronavirus 
650 4 |a Gibbs sampling 
650 4 |a epidemiology 
650 4 |a pandemic 
700 1 |a Deb, Soudeep  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 11-12 vom: 01., Seite 2310-2329  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:50  |g year:2023  |g number:11-12  |g day:01  |g pages:2310-2329 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1970122  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 11-12  |b 01  |h 2310-2329