Identification of factors impacting on the transmission and mortality of COVID-19

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 11-12 vom: 01., Seite 2624-2647
1. Verfasser: Zhang, Peiyi (VerfasserIn)
Weitere Verfasser: Dong, Tianning, Li, Ninghui, Liang, Faming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Dynamic infectious disease model Langevinized ensemble Kalman filter spatio-temporal data state-space model surveillance data
LEADER 01000naa a22002652 4500
001 NLM360293425
003 DE-627
005 20231226082714.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1953449  |2 doi 
028 5 2 |a pubmed24n1200.xml 
035 |a (DE-627)NLM360293425 
035 |a (NLM)37529571 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Peiyi  |e verfasserin  |4 aut 
245 1 0 |a Identification of factors impacting on the transmission and mortality of COVID-19 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.09.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a This paper proposes a dynamic infectious disease model for COVID-19 daily counts data and estimate the model using the Langevinized EnKF algorithm, which is scalable for large-scale spatio-temporal data, converges to the right filtering distribution, and is thus suitable for performing statistical inference and quantifying uncertainty for the underlying dynamic system. Under the framework of the proposed dynamic infectious disease model, we tested the impact of temperature, precipitation, state emergency order and stay home order on the spread of COVID-19 based on the United States county-wise daily counts data. Our numerical results show that warm and humid weather can significantly slow the spread of COVID-19, and the state emergency and stay home orders also help to slow it. This finding provides guidance and support to future policies or acts for mitigating the community transmission and lowering the mortality rate of COVID-19 
650 4 |a Journal Article 
650 4 |a Dynamic infectious disease model 
650 4 |a Langevinized ensemble Kalman filter 
650 4 |a spatio-temporal data 
650 4 |a state-space model 
650 4 |a surveillance data 
700 1 |a Dong, Tianning  |e verfasserin  |4 aut 
700 1 |a Li, Ninghui  |e verfasserin  |4 aut 
700 1 |a Liang, Faming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 11-12 vom: 01., Seite 2624-2647  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:50  |g year:2023  |g number:11-12  |g day:01  |g pages:2624-2647 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1953449  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 11-12  |b 01  |h 2624-2647