A latent space model and Hotelling's T2 control chart to monitor the networks of Covid-19 symptoms

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 11-12 vom: 01., Seite 2450-2472
1. Verfasser: Elhambakhsh, Fatemeh (VerfasserIn)
Weitere Verfasser: Sabri-Laghaie, Kamyar, Noorossana, Rassoul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Applications of statistics in Engineering and industry COVID-19 symptoms Latent space models control charts dynamic networks multivariate control charts network surveillance
LEADER 01000caa a22002652c 4500
001 NLM360293352
003 DE-627
005 20250305030749.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2145459  |2 doi 
028 5 2 |a pubmed25n1200.xml 
035 |a (DE-627)NLM360293352 
035 |a (NLM)37529564 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Elhambakhsh, Fatemeh  |e verfasserin  |4 aut 
245 1 2 |a A latent space model and Hotelling's T2 control chart to monitor the networks of Covid-19 symptoms 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.11.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In the COVID-19 coronavirus pandemic, potential patients that suffer from different symptoms can be diagnosed with COVID-19. At the early stages of the pandemic, patients were mainly diagnosed with fever and respiratory symptoms. Recently, patients with new symptoms, such as gastrointestinal or loss of senses, are also diagnosed with COVID-19. Monitoring these symptoms can help the healthcare system to be aware of new symptoms that can be related to the COVID-19 coronavirus. This article focuses on monitoring the behavior of COVID-19 symptoms over time. In this regard, a Latent space model (LSM) and a Generalized linear model (GLM) are introduced to model the networks of symptoms. We apply Hotelling's T2 control chart to the estimated parameters of the LSM and GLM, to identify significant changes and detect anomalies in the networks. The performance of the proposed methods is evaluated using simulation and calculating average run length (ARL). Then, dynamic networks are generated from a COVID-19 epidemic survey dataset 
650 4 |a Journal Article 
650 4 |a Applications of statistics in Engineering and industry 
650 4 |a COVID-19 symptoms 
650 4 |a Latent space models 
650 4 |a control charts 
650 4 |a dynamic networks 
650 4 |a multivariate control charts 
650 4 |a network surveillance 
700 1 |a Sabri-Laghaie, Kamyar  |e verfasserin  |4 aut 
700 1 |a Noorossana, Rassoul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 11-12 vom: 01., Seite 2450-2472  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:50  |g year:2023  |g number:11-12  |g day:01  |g pages:2450-2472 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2145459  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 11-12  |b 01  |h 2450-2472