Classification and severity progression measure of COVID-19 patients using pairs of multi-omic factors

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 11-12 vom: 01., Seite 2473-2503
1. Verfasser: Chen, Teng (VerfasserIn)
Weitere Verfasser: Polak, Paweł, Uryasev, Stanislav
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62-07 62P10 COVID-19 cluster analysis generalized additive model nonparametric logistic regression spline interpolation
LEADER 01000naa a22002652 4500
001 NLM360293328
003 DE-627
005 20231226082714.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2064975  |2 doi 
028 5 2 |a pubmed24n1200.xml 
035 |a (DE-627)NLM360293328 
035 |a (NLM)37529561 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Teng  |e verfasserin  |4 aut 
245 1 0 |a Classification and severity progression measure of COVID-19 patients using pairs of multi-omic factors 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.09.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Early detection and effective treatment of severe COVID-19 patients remain two major challenges during the current pandemic. Analysis of molecular changes in blood samples of severe patients is one of the promising approaches to this problem. From thousands of proteomic, metabolomic, lipidomic, and transcriptomic biomarkers selected in other research, we identify several pairs of biomarkers that after additional nonlinear spline transformation are highly effective in classifying and predicting severe COVID-19 cases. The performance of these pairs is evaluated in-sample, in a cross-validation exercise, and in an out-of-sample analysis on two independent datasets. We further improve our classifier by identifying complementary pairs using hierarchical clustering. In a result, we achieve 96-98% AUC on the validation data. Our findings can help medical experts to identify small groups of biomarkers that after nonlinear transformation can be used to construct a cost-effective test for patient screening and prediction of severity progression 
650 4 |a Journal Article 
650 4 |a 62-07 
650 4 |a 62P10 
650 4 |a COVID-19 
650 4 |a cluster analysis 
650 4 |a generalized additive model 
650 4 |a nonparametric logistic regression 
650 4 |a spline interpolation 
700 1 |a Polak, Paweł  |e verfasserin  |4 aut 
700 1 |a Uryasev, Stanislav  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 11-12 vom: 01., Seite 2473-2503  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:50  |g year:2023  |g number:11-12  |g day:01  |g pages:2473-2503 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2064975  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 11-12  |b 01  |h 2473-2503