|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM360286089 |
003 |
DE-627 |
005 |
20231226082705.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.chemmater.3c00934
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1200.xml
|
035 |
|
|
|a (DE-627)NLM360286089
|
035 |
|
|
|a (NLM)37528839
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Romero-Pérez, Carlos
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Ultrapure Green High Photoluminescence Quantum Yield from FAPbBr3 Nanocrystals Embedded in Transparent Porous Films
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 03.08.2023
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Published by American Chemical Society.
|
520 |
|
|
|a Achieving highly transparent and emissive films based on perovskite quantum dots (PQDs) is a challenging task since their photoluminescence quantum yield (PLQY) typically drops abruptly when they are used as building blocks to make a solid. In this work, we obtain highly transparent films containing FAPbBr3 quantum dots that display a narrow green emission (λ = 530 nm, full width at half-maximum (FWHM) = 23 nm) with a PLQY as high as 86%. The method employed makes use of porous matrices that act as arrays of nanoreactors to synthesize the targeted quantum dots within their void space, providing both a means to keep them dispersed and a protective environment. Further infiltration with poly(methyl methacrylate) (PMMA) increases the mechanical and chemical stability of the ensemble and serves to passivate surface defects, boosting the emission of the embedded PQD and significantly reducing the width of the emission peak, which fulfills the requirements established by the Commission Internationale de l'Éclairage (CIE) to be considered an ultrapure green emitter. The versatility of this approach is demonstrated by fabricating a color-converting layer that can be easily transferred onto a light-emitting device surface to modify the spectral properties of the outgoing radiation
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Delgado, Natalia Fernández
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Herrera-Collado, Miriam
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Calvo, Mauricio E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Míguez, Hernán
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Chemistry of materials : a publication of the American Chemical Society
|d 1998
|g 35(2023), 14 vom: 25. Juli, Seite 5541-5549
|w (DE-627)NLM098194763
|x 0897-4756
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:14
|g day:25
|g month:07
|g pages:5541-5549
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.chemmater.3c00934
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 14
|b 25
|c 07
|h 5541-5549
|