Lightweight Pixel Difference Networks for Efficient Visual Representation Learning

Recently, there have been tremendous efforts in developing lightweight Deep Neural Networks (DNNs) with satisfactory accuracy, which can enable the ubiquitous deployment of DNNs in edge devices. The core challenge of developing compact and efficient DNNs lies in how to balance the competing goals of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 01. Dez., Seite 14956-14974
1. Verfasser: Su, Zhuo (VerfasserIn)
Weitere Verfasser: Zhang, Jiehua, Wang, Longguang, Zhang, Hua, Liu, Zhen, Pietikainen, Matti, Liu, Li
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM360270808
003 DE-627
005 20250305030429.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3300513  |2 doi 
028 5 2 |a pubmed25n1200.xml 
035 |a (DE-627)NLM360270808 
035 |a (NLM)37527290 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Zhuo  |e verfasserin  |4 aut 
245 1 0 |a Lightweight Pixel Difference Networks for Efficient Visual Representation Learning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, there have been tremendous efforts in developing lightweight Deep Neural Networks (DNNs) with satisfactory accuracy, which can enable the ubiquitous deployment of DNNs in edge devices. The core challenge of developing compact and efficient DNNs lies in how to balance the competing goals of achieving high accuracy and high efficiency. In this paper we propose two novel types of convolutions, dubbed Pixel Difference Convolution (PDC) and Binary PDC (Bi-PDC) which enjoy the following benefits: capturing higher-order local differential information, computationally efficient, and able to be integrated with existing DNNs. With PDC and Bi-PDC, we further present two lightweight deep networks named Pixel Difference Networks (PiDiNet) and Binary PiDiNet (Bi-PiDiNet) respectively to learn highly efficient yet more accurate representations for visual tasks including edge detection and object recognition. Extensive experiments on popular datasets (BSDS500, ImageNet, LFW, YTF, etc.) show that PiDiNet and Bi-PiDiNet achieve the best accuracy-efficiency trade-off. For edge detection, PiDiNet is the first network that can be trained without ImageNet, and can achieve the human-level performance on BSDS500 at 100 FPS and with 1 M parameters. For object recognition, among existing Binary DNNs, Bi-PiDiNet achieves the best accuracy and a nearly 2× reduction of computational cost on ResNet18 
650 4 |a Journal Article 
700 1 |a Zhang, Jiehua  |e verfasserin  |4 aut 
700 1 |a Wang, Longguang  |e verfasserin  |4 aut 
700 1 |a Zhang, Hua  |e verfasserin  |4 aut 
700 1 |a Liu, Zhen  |e verfasserin  |4 aut 
700 1 |a Pietikainen, Matti  |e verfasserin  |4 aut 
700 1 |a Liu, Li  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 01. Dez., Seite 14956-14974  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:01  |g month:12  |g pages:14956-14974 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3300513  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 01  |c 12  |h 14956-14974