Sensor-Based Quantification of Peanut Disease Defoliation Using an Unmanned Aircraft System and Multispectral Imagery

Early leaf spot (Passalora arachidicola) and late leaf spot (Nothopassalora personata) are two of the most economically important foliar fungal diseases of peanut, often requiring seven to eight fungicide applications to protect against defoliation and yield loss. Rust (Puccinia arachidis) may also...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 108(2024), 2 vom: 31. Feb., Seite 416-425
1. Verfasser: Barocco, Rebecca L (VerfasserIn)
Weitere Verfasser: Clohessy, James W, O'Brien, G Kelly, Dufault, Nicholas S, Anco, Daniel J, Small, Ian M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Cercospora arachidicola Cercosporidium personatum Nothopassalora personata Passalora arachidicola Puccinia arachidis disease development and spread foliar disease fungi oilseeds and legumes mehr... remote sensing Fungicides, Industrial
LEADER 01000caa a22002652 4500
001 NLM360262988
003 DE-627
005 20240301232008.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-05-23-0847-RE  |2 doi 
028 5 2 |a pubmed24n1313.xml 
035 |a (DE-627)NLM360262988 
035 |a (NLM)37526489 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Barocco, Rebecca L  |e verfasserin  |4 aut 
245 1 0 |a Sensor-Based Quantification of Peanut Disease Defoliation Using an Unmanned Aircraft System and Multispectral Imagery 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.03.2024 
500 |a Date Revised 01.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Early leaf spot (Passalora arachidicola) and late leaf spot (Nothopassalora personata) are two of the most economically important foliar fungal diseases of peanut, often requiring seven to eight fungicide applications to protect against defoliation and yield loss. Rust (Puccinia arachidis) may also cause significant defoliation depending on season and location. Sensor technologies are increasingly being utilized to objectively monitor plant disease epidemics for research and supporting integrated management decisions. This study aimed to develop an algorithm to quantify peanut disease defoliation using multispectral imagery captured by an unmanned aircraft system. The algorithm combined the Green Normalized Difference Vegetation Index and the Modified Soil-Adjusted Vegetation Index and included calibration to site-specific peak canopy growth. Beta regression was used to train a model for percent net defoliation with observed visual estimations of the variety 'GA-06G' (0 to 95%) as the target and imagery as the predictor (train: pseudo-R2 = 0.71, test k-fold cross-validation: R2 = 0.84 and RMSE = 4.0%). The model performed well on new data from two field trials not included in model training that compared 25 (R2 = 0.79, RMSE = 3.7%) and seven (R2 = 0.87, RMSE = 9.4%) fungicide programs. This objective method of assessing mid-to-late season disease severity can be used to assist growers with harvest decisions and researchers with reproducible assessment of field experiments. This model will be integrated into future work with proximal ground sensors for pathogen identification and early season disease detection.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license 
650 4 |a Journal Article 
650 4 |a Cercospora arachidicola 
650 4 |a Cercosporidium personatum 
650 4 |a Nothopassalora personata 
650 4 |a Passalora arachidicola 
650 4 |a Puccinia arachidis 
650 4 |a disease development and spread 
650 4 |a foliar disease 
650 4 |a fungi 
650 4 |a oilseeds and legumes 
650 4 |a remote sensing 
650 7 |a Fungicides, Industrial  |2 NLM 
700 1 |a Clohessy, James W  |e verfasserin  |4 aut 
700 1 |a O'Brien, G Kelly  |e verfasserin  |4 aut 
700 1 |a Dufault, Nicholas S  |e verfasserin  |4 aut 
700 1 |a Anco, Daniel J  |e verfasserin  |4 aut 
700 1 |a Small, Ian M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 108(2024), 2 vom: 31. Feb., Seite 416-425  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g volume:108  |g year:2024  |g number:2  |g day:31  |g month:02  |g pages:416-425 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-05-23-0847-RE  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 108  |j 2024  |e 2  |b 31  |c 02  |h 416-425