An information-theoretic approach to basis-set fitting of electron densities and other non-negative functions

© 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 44(2023), 25 vom: 30. Sept., Seite 1998-2015
1. Verfasser: Tehrani, Alireza (VerfasserIn)
Weitere Verfasser: Anderson, James S M, Chakraborty, Debajit, Rodriguez-Hernandez, Juan I, Thompson, David C, Verstraelen, Toon, Ayers, Paul W, Heidar-Zadeh, Farnaz
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Kullback-Leibler electron density information-theoretic fitting least squares probabilty density fitting
LEADER 01000naa a22002652 4500
001 NLM360259502
003 DE-627
005 20231226082632.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27170  |2 doi 
028 5 2 |a pubmed24n1200.xml 
035 |a (DE-627)NLM360259502 
035 |a (NLM)37526138 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tehrani, Alireza  |e verfasserin  |4 aut 
245 1 3 |a An information-theoretic approach to basis-set fitting of electron densities and other non-negative functions 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a The numerical ill-conditioning associated with approximating an electron density with a convex sum of Gaussian or Slater-type functions is overcome by using the (extended) Kullback-Leibler divergence to measure the deviation between the target and approximate density. The optimized densities are non-negative and normalized, and they are accurate enough to be used in applications related to molecular similarity, the topology of the electron density, and numerical molecular integration. This robust, efficient, and general approach can be used to fit any non-negative normalized functions (e.g., the kinetic energy density and molecular electron density) to a convex sum of non-negative basis functions. We present a fixed-point iteration method for optimizing the Kullback-Leibler divergence and compare it to conventional gradient-based optimization methods. These algorithms are released through the free and open-source BFit package, which also includes a L2-norm squared optimization routine applicable to any square-integrable scalar function 
650 4 |a Journal Article 
650 4 |a Kullback-Leibler 
650 4 |a electron density 
650 4 |a information-theoretic fitting 
650 4 |a least squares 
650 4 |a probabilty density fitting 
700 1 |a Anderson, James S M  |e verfasserin  |4 aut 
700 1 |a Chakraborty, Debajit  |e verfasserin  |4 aut 
700 1 |a Rodriguez-Hernandez, Juan I  |e verfasserin  |4 aut 
700 1 |a Thompson, David C  |e verfasserin  |4 aut 
700 1 |a Verstraelen, Toon  |e verfasserin  |4 aut 
700 1 |a Ayers, Paul W  |e verfasserin  |4 aut 
700 1 |a Heidar-Zadeh, Farnaz  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 44(2023), 25 vom: 30. Sept., Seite 1998-2015  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:44  |g year:2023  |g number:25  |g day:30  |g month:09  |g pages:1998-2015 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27170  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2023  |e 25  |b 30  |c 09  |h 1998-2015