|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM360239358 |
003 |
DE-627 |
005 |
20231226082605.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202304699
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1200.xml
|
035 |
|
|
|a (DE-627)NLM360239358
|
035 |
|
|
|a (NLM)37524107
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, He
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a High Freshwater Flux Solar Desalination via a 3D Plasmonic Evaporator with an Efficient Heat-Mass Evaporation Interface
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.11.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Passive solar desalination with interfacial heating is a promising technique to utilize solar energy to convert seawater into fresh water through evaporation and condensation. However, the current freshwater flux of solar desalination is much below industrial requirements (> 20 L m-2 h-1 ). Herein, it is demonstrated that a 3D plasmonic evaporator with an efficient heat-mass evaporation interface (HM-EI) achieves a freshwater flux of 29.1 L m-2 h-1 for 3.5 wt.% NaCl, which surpasses the previous solar evaporators and approaches the level of reverse osmosis (the highest installed capacity in industrial seawater desalination technology). The realization of high freshwater flux solar desalination comes from the efficient HM-EI comprising a grid-like plasmonic macrostructure for enhanced energy utilization in heat properties and a large-pore microstructure for accelerated ion transport in mass properties. This work provides a new direction for designing next-generation solar evaporators with high freshwater flux for industrial requirements
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D printing
|
650 |
|
4 |
|a energy utilization
|
650 |
|
4 |
|a ion transport
|
650 |
|
4 |
|a localized surface plasmon resonance
|
650 |
|
4 |
|a solar desalination
|
700 |
1 |
|
|a Li, Dong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Xiaodong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zuo, Jianyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Dan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Jianwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Zhiqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ju, Sheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Meiwen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Yinghui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Lin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 47 vom: 23. Nov., Seite e2304699
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:47
|g day:23
|g month:11
|g pages:e2304699
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202304699
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 47
|b 23
|c 11
|h e2304699
|