Assessing and predicting the illegal dumping risks in relation to road characteristics

Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 169(2023) vom: 01. Sept., Seite 332-341
1. Verfasser: Du, Linwei (VerfasserIn)
Weitere Verfasser: Zuo, Jian, Vanzo, John, Chang, Ruidong, Zillante, George
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Illegal dumping Low-population density Prediction Risk assessment Road characteristics Solid waste
LEADER 01000naa a22002652 4500
001 NLM360158137
003 DE-627
005 20231226082420.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2023.07.031  |2 doi 
028 5 2 |a pubmed24n1200.xml 
035 |a (DE-627)NLM360158137 
035 |a (NLM)37515944 
035 |a (PII)S0956-053X(23)00505-6 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Du, Linwei  |e verfasserin  |4 aut 
245 1 0 |a Assessing and predicting the illegal dumping risks in relation to road characteristics 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.09.2023 
500 |a Date Revised 08.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved. 
520 |a Using historical data to assess illegal dumping risks has significant potential to enhance the effectiveness of waste management in low-population density counties where the ability to patrol and regulate illegal dumping is limited. Using big data and geographical analysis to identify high-risk areas plays an important role in improving the effectiveness of supervision related to illegal dumping. However, current methods for classifying risk areas have limited accuracy. Taking an area in South Australia as an example, this study aims to improve the accuracy of classifying risk areas by using geo-information technology and machine learning methods. The results show that combining illegal dumping locations with road characteristics allows the high-risk areas to be refined to road sections. Compared with identifying the whole road or area as a high-risk spot, this result could be beneficial for monitoring illegal dumping in real life. Moreover, this model allows the analysis of factors that affect illegal dumping locations. Results show that the influencing factors for different risk levels of illegal dumping vary significantly. The model developed in this research can effectively distinguish risk levels according to these factors, and the model classification accuracy can reach 85%. In addition, there are priorities amongst these factors. This finding could help environmental authorities to allocate equipment and personnel with consideration of varying level of importance of those factors. This study has both technical contributions to identify high risk areas of illegal dumping, and theoretical implications for its management 
650 4 |a Journal Article 
650 4 |a Illegal dumping 
650 4 |a Low-population density 
650 4 |a Prediction 
650 4 |a Risk assessment 
650 4 |a Road characteristics 
650 4 |a Solid waste 
700 1 |a Zuo, Jian  |e verfasserin  |4 aut 
700 1 |a Vanzo, John  |e verfasserin  |4 aut 
700 1 |a Chang, Ruidong  |e verfasserin  |4 aut 
700 1 |a Zillante, George  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 169(2023) vom: 01. Sept., Seite 332-341  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnns 
773 1 8 |g volume:169  |g year:2023  |g day:01  |g month:09  |g pages:332-341 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2023.07.031  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 169  |j 2023  |b 01  |c 09  |h 332-341