Synthesis of 2H/fcc-Heterophase AuCu Nanostructures for Highly Efficient Electrochemical CO2 Reduction at Industrial Current Densities

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 51 vom: 10. Dez., Seite e2304414
1. Verfasser: Zhou, Xichen (VerfasserIn)
Weitere Verfasser: Zhang, An, Chen, Bo, Zhu, Shangqian, Cui, Yu, Bai, Licheng, Yu, Jinli, Ge, Yiyao, Yun, Qinbai, Li, Lujiang, Huang, Biao, Liao, Lingwen, Fu, Jiaju, Wa, Qingbo, Wang, Gang, Huang, Zhiqi, Zheng, Long, Ren, Yi, Li, Siyuan, Liu, Guangyao, Zhai, Li, Li, Zijian, Liu, Jiawei, Chen, Ye, Ma, Lu, Ling, Chongyi, Wang, Jinlan, Fan, Zhanxi, Du, Yonghua, Shao, Minhua, Zhang, Hua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article CO2 reduction reaction bimetallic nanostructures heterophase in-situ FTIR phase engineering of nanomaterials
LEADER 01000caa a22002652 4500
001 NLM360154492
003 DE-627
005 20231227135239.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202304414  |2 doi 
028 5 2 |a pubmed24n1234.xml 
035 |a (DE-627)NLM360154492 
035 |a (NLM)37515580 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Xichen  |e verfasserin  |4 aut 
245 1 0 |a Synthesis of 2H/fcc-Heterophase AuCu Nanostructures for Highly Efficient Electrochemical CO2 Reduction at Industrial Current Densities 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99 Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91 Cu9 and fcc Au99 Cu1 . The experimental results, especially those obtained by in-situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99 Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99 Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm-2 , respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications 
650 4 |a Journal Article 
650 4 |a CO2 reduction reaction 
650 4 |a bimetallic nanostructures 
650 4 |a heterophase 
650 4 |a in-situ FTIR 
650 4 |a phase engineering of nanomaterials 
700 1 |a Zhang, An  |e verfasserin  |4 aut 
700 1 |a Chen, Bo  |e verfasserin  |4 aut 
700 1 |a Zhu, Shangqian  |e verfasserin  |4 aut 
700 1 |a Cui, Yu  |e verfasserin  |4 aut 
700 1 |a Bai, Licheng  |e verfasserin  |4 aut 
700 1 |a Yu, Jinli  |e verfasserin  |4 aut 
700 1 |a Ge, Yiyao  |e verfasserin  |4 aut 
700 1 |a Yun, Qinbai  |e verfasserin  |4 aut 
700 1 |a Li, Lujiang  |e verfasserin  |4 aut 
700 1 |a Huang, Biao  |e verfasserin  |4 aut 
700 1 |a Liao, Lingwen  |e verfasserin  |4 aut 
700 1 |a Fu, Jiaju  |e verfasserin  |4 aut 
700 1 |a Wa, Qingbo  |e verfasserin  |4 aut 
700 1 |a Wang, Gang  |e verfasserin  |4 aut 
700 1 |a Huang, Zhiqi  |e verfasserin  |4 aut 
700 1 |a Zheng, Long  |e verfasserin  |4 aut 
700 1 |a Ren, Yi  |e verfasserin  |4 aut 
700 1 |a Li, Siyuan  |e verfasserin  |4 aut 
700 1 |a Liu, Guangyao  |e verfasserin  |4 aut 
700 1 |a Zhai, Li  |e verfasserin  |4 aut 
700 1 |a Li, Zijian  |e verfasserin  |4 aut 
700 1 |a Liu, Jiawei  |e verfasserin  |4 aut 
700 1 |a Chen, Ye  |e verfasserin  |4 aut 
700 1 |a Ma, Lu  |e verfasserin  |4 aut 
700 1 |a Ling, Chongyi  |e verfasserin  |4 aut 
700 1 |a Wang, Jinlan  |e verfasserin  |4 aut 
700 1 |a Fan, Zhanxi  |e verfasserin  |4 aut 
700 1 |a Du, Yonghua  |e verfasserin  |4 aut 
700 1 |a Shao, Minhua  |e verfasserin  |4 aut 
700 1 |a Zhang, Hua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 51 vom: 10. Dez., Seite e2304414  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:51  |g day:10  |g month:12  |g pages:e2304414 
856 4 0 |u http://dx.doi.org/10.1002/adma.202304414  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 51  |b 10  |c 12  |h e2304414