Rotational Convolution : Rethinking Convolution for Downside Fisheye Images

It has long been recognized that the standard convolution is not rotation equivariant and thus not appropriate for downside fisheye images which are rotationally symmetric. This paper introduces Rotational Convolution, a novel convolution that rotates the convolution kernel by characteristics of dow...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 28., Seite 4355-4364
1. Verfasser: Wei, Xuan (VerfasserIn)
Weitere Verfasser: Su, Shixiang, Wei, Yun, Lu, Xiaobo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:It has long been recognized that the standard convolution is not rotation equivariant and thus not appropriate for downside fisheye images which are rotationally symmetric. This paper introduces Rotational Convolution, a novel convolution that rotates the convolution kernel by characteristics of downside fisheye images. With the four rotation states of the convolution kernel, Rotational Convolution can be implemented on discrete signals. Rotational Convolution improves the performance of different networks in semantic segmentation and object detection markedly, harming the inference speed slightly. Finally, we demonstrate our methods' numerical accuracy, computational efficiency, and effectiveness on the public segmentation dataset THEODORE and our self-built detection dataset SEU-fisheye. Our code is available at: https://github.com/wx19941204/Rotational-Convolution-for-downside-fisheye-images
Beschreibung:Date Revised 03.08.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2023.3298475