Modeling Noisy Annotations for Point-Wise Supervision

Point-wise supervision is widely adopted in computer vision tasks such as crowd counting and human pose estimation. In practice, the noise in point annotations may affect the performance and robustness of algorithm significantly. In this paper, we investigate the effect of annotation noise in point-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 28. Dez., Seite 15065-15080
1. Verfasser: Wan, Jia (VerfasserIn)
Weitere Verfasser: Wu, Qiangqiang, Chan, Antoni B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM360058965
003 DE-627
005 20231226082213.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3299753  |2 doi 
028 5 2 |a pubmed24n1200.xml 
035 |a (DE-627)NLM360058965 
035 |a (NLM)37506001 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wan, Jia  |e verfasserin  |4 aut 
245 1 0 |a Modeling Noisy Annotations for Point-Wise Supervision 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Point-wise supervision is widely adopted in computer vision tasks such as crowd counting and human pose estimation. In practice, the noise in point annotations may affect the performance and robustness of algorithm significantly. In this paper, we investigate the effect of annotation noise in point-wise supervision and propose a series of robust loss functions for different tasks. In particular, the point annotation noise includes spatial-shift noise, missing-point noise, and duplicate-point noise. The spatial-shift noise is the most common one, and exists in crowd counting, pose estimation, visual tracking, etc, while the missing-point and duplicate-point noises usually appear in dense annotations, such as crowd counting. In this paper, we first consider the shift noise by modeling the real locations as random variables and the annotated points as noisy observations. The probability density function of the intermediate representation (a smooth heat map generated from dot annotations) is derived and the negative log likelihood is used as the loss function to naturally model the shift uncertainty in the intermediate representation. The missing and duplicate noise are further modeled by an empirical way with the assumption that the noise appears at high density region with a high probability. We apply the method to crowd counting, human pose estimation and visual tracking, propose robust loss functions for those tasks, and achieve superior performance and robustness on widely used datasets 
650 4 |a Journal Article 
700 1 |a Wu, Qiangqiang  |e verfasserin  |4 aut 
700 1 |a Chan, Antoni B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 28. Dez., Seite 15065-15080  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:28  |g month:12  |g pages:15065-15080 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3299753  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 28  |c 12  |h 15065-15080