Supervision by Denoising

Learning-based image reconstruction models, such as those based on the U-Net, require a large set of labeled images if good generalization is to be guaranteed. In some imaging domains, however, labeled data with pixel- or voxel-level label accuracy are scarce due to the cost of acquiring them. This...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2023) vom: 28. Juli
1. Verfasser: Young, Sean I (VerfasserIn)
Weitere Verfasser: Dalca, Adrian V, Ferrante, Enzo, Golland, Polina, Metzler, Christopher A, Fischl, Bruce, Iglesias, Juan Eugenio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM360058922
003 DE-627
005 20240316232528.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3299789  |2 doi 
028 5 2 |a pubmed24n1332.xml 
035 |a (DE-627)NLM360058922 
035 |a (NLM)37505997 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Young, Sean I  |e verfasserin  |4 aut 
245 1 0 |a Supervision by Denoising 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Learning-based image reconstruction models, such as those based on the U-Net, require a large set of labeled images if good generalization is to be guaranteed. In some imaging domains, however, labeled data with pixel- or voxel-level label accuracy are scarce due to the cost of acquiring them. This problem is exacerbated further in domains like medical imaging, where there is no single ground truth label, resulting in large amounts of repeat variability in the labels. Therefore, training reconstruction networks to generalize better by learning from both labeled and unlabeled examples (called semi-supervised learning) is problem of practical and theoretical interest. However, traditional semi-supervised learning methods for image reconstruction often necessitate handcrafting a differentiable regularizer specific to some given imaging problem, which can be extremely time-consuming. In this work, we propose "supervision by denoising" (SUD), a framework to supervise reconstruction models using their own denoised output as labels. SUD unifies stochastic averaging and spatial denoising techniques under a spatio-temporal denoising framework and alternates denoising and model weight update steps in an optimization framework for semi-supervision. As example applications, we apply SUD to two problems from biomedical imaging-anatomical brain reconstruction (3D) and cortical parcellation (2D)-to demonstrate a significant improvement in reconstruction over supervised-only and ensembling baselines. Our code available at https://github.com/seannz/sud 
650 4 |a Journal Article 
700 1 |a Dalca, Adrian V  |e verfasserin  |4 aut 
700 1 |a Ferrante, Enzo  |e verfasserin  |4 aut 
700 1 |a Golland, Polina  |e verfasserin  |4 aut 
700 1 |a Metzler, Christopher A  |e verfasserin  |4 aut 
700 1 |a Fischl, Bruce  |e verfasserin  |4 aut 
700 1 |a Iglesias, Juan Eugenio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2023) vom: 28. Juli  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:28  |g month:07 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3299789  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 28  |c 07