Hybrid Data-Driven Discovery of High-Performance Silver Selenide-Based Thermoelectric Composites

© 2023 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 47 vom: 07. Nov., Seite e2212230
Auteur principal: Shang, Wenjie (Auteur)
Autres auteurs: Zeng, Minxiang, Tanvir, A N M, Wang, Ke, Saeidi-Javash, Mortaza, Dowling, Alexander, Luo, Tengfei, Zhang, Yanliang
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article Bayesian optimization composites machine learning power factor thermoelectrics
LEADER 01000caa a22002652c 4500
001 NLM359933432
003 DE-627
005 20250305021348.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202212230  |2 doi 
028 5 2 |a pubmed25n1199.xml 
035 |a (DE-627)NLM359933432 
035 |a (NLM)37493182 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shang, Wenjie  |e verfasserin  |4 aut 
245 1 0 |a Hybrid Data-Driven Discovery of High-Performance Silver Selenide-Based Thermoelectric Composites 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Optimizing material compositions often enhances thermoelectric performances. However, the large selection of possible base elements and dopants results in a vast composition design space that is too large to systematically search using solely domain knowledge. To address this challenge, a hybrid data-driven strategy that integrates Bayesian optimization (BO) and Gaussian process regression (GPR) is proposed to optimize the composition of five elements (Ag, Se, S, Cu, and Te) in AgSe-based thermoelectric materials. Data is collected from the literature to provide prior knowledge for the initial GPR model, which is updated by actively collected experimental data during the iteration between BO and experiments. Within seven iterations, the optimized AgSe-based materials prepared using a simple high-throughput ink mixing and blade coating method deliver a high power factor of 2100 µW m-1 K-2 , which is a 75% improvement from the baseline composite (nominal composition of Ag2 Se1 ). The success of this study provides opportunities to generalize the demonstrated active machine learning technique to accelerate the development and optimization of a wide range of material systems with reduced experimental trials 
650 4 |a Journal Article 
650 4 |a Bayesian optimization 
650 4 |a composites 
650 4 |a machine learning 
650 4 |a power factor 
650 4 |a thermoelectrics 
700 1 |a Zeng, Minxiang  |e verfasserin  |4 aut 
700 1 |a Tanvir, A N M  |e verfasserin  |4 aut 
700 1 |a Wang, Ke  |e verfasserin  |4 aut 
700 1 |a Saeidi-Javash, Mortaza  |e verfasserin  |4 aut 
700 1 |a Dowling, Alexander  |e verfasserin  |4 aut 
700 1 |a Luo, Tengfei  |e verfasserin  |4 aut 
700 1 |a Zhang, Yanliang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 47 vom: 07. Nov., Seite e2212230  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:47  |g day:07  |g month:11  |g pages:e2212230 
856 4 0 |u http://dx.doi.org/10.1002/adma.202212230  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 47  |b 07  |c 11  |h e2212230