|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM359933432 |
003 |
DE-627 |
005 |
20231226081930.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202212230
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1199.xml
|
035 |
|
|
|a (DE-627)NLM359933432
|
035 |
|
|
|a (NLM)37493182
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shang, Wenjie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Hybrid Data-Driven Discovery of High-Performance Silver Selenide-Based Thermoelectric Composites
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 23.11.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Optimizing material compositions often enhances thermoelectric performances. However, the large selection of possible base elements and dopants results in a vast composition design space that is too large to systematically search using solely domain knowledge. To address this challenge, a hybrid data-driven strategy that integrates Bayesian optimization (BO) and Gaussian process regression (GPR) is proposed to optimize the composition of five elements (Ag, Se, S, Cu, and Te) in AgSe-based thermoelectric materials. Data is collected from the literature to provide prior knowledge for the initial GPR model, which is updated by actively collected experimental data during the iteration between BO and experiments. Within seven iterations, the optimized AgSe-based materials prepared using a simple high-throughput ink mixing and blade coating method deliver a high power factor of 2100 µW m-1 K-2 , which is a 75% improvement from the baseline composite (nominal composition of Ag2 Se1 ). The success of this study provides opportunities to generalize the demonstrated active machine learning technique to accelerate the development and optimization of a wide range of material systems with reduced experimental trials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Bayesian optimization
|
650 |
|
4 |
|a composites
|
650 |
|
4 |
|a machine learning
|
650 |
|
4 |
|a power factor
|
650 |
|
4 |
|a thermoelectrics
|
700 |
1 |
|
|a Zeng, Minxiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tanvir, A N M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Ke
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Saeidi-Javash, Mortaza
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dowling, Alexander
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luo, Tengfei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yanliang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 47 vom: 07. Nov., Seite e2212230
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:47
|g day:07
|g month:11
|g pages:e2212230
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202212230
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 47
|b 07
|c 11
|h e2212230
|