LRT : An Efficient Low-Light Restoration Transformer for Dark Light Field Images
Light field (LF) images containing information for multiple views have numerous applications, which can be severely affected by low-light imaging. Recent learning-based methods for low-light enhancement have some disadvantages, such as a lack of noise suppression, complex training process and poor p...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 25., Seite 4314-4326 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Light field (LF) images containing information for multiple views have numerous applications, which can be severely affected by low-light imaging. Recent learning-based methods for low-light enhancement have some disadvantages, such as a lack of noise suppression, complex training process and poor performance in extremely low-light conditions. To tackle these deficiencies while fully utilizing the multi-view information, we propose an efficient Low-light Restoration Transformer (LRT) for LF images, with multiple heads to perform intermediate tasks within a single network, including denoising, luminance adjustment, refinement and detail enhancement, achieving progressive restoration from small scale to full scale. Moreover, we design an angular transformer block with an efficient view-token scheme to model the global angular dependencies, and a multi-scale spatial transformer block to encode the multi-scale local and global information within each view. To address the issue of insufficient training data, we formulate a synthesis pipeline by simulating the major noise sources with the estimated noise parameters of LF camera. Experimental results demonstrate that our method achieves the state-of-the-art performance on low-light LF restoration with high efficiency |
---|---|
Beschreibung: | Date Revised 01.08.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2023.3297412 |