Prediction With Visual Evidence : Sketch Classification Explanation via Stroke-Level Attributions

Sketch classification models have been extensively investigated by designing a task-driven deep neural network. Despite their successful performances, few works have attempted to explain the prediction of sketch classifiers. To explain the prediction of classifiers, an intuitive way is to visualize...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 21., Seite 4393-4406
Auteur principal: Liu, Sixuan (Auteur)
Autres auteurs: Li, Jingzhi, Zhang, Hua, Xu, Long, Cao, Xiaochun
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM35990579X
003 DE-627
005 20250305020941.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3297404  |2 doi 
028 5 2 |a pubmed25n1199.xml 
035 |a (DE-627)NLM35990579X 
035 |a (NLM)37490377 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Sixuan  |e verfasserin  |4 aut 
245 1 0 |a Prediction With Visual Evidence  |b Sketch Classification Explanation via Stroke-Level Attributions 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Sketch classification models have been extensively investigated by designing a task-driven deep neural network. Despite their successful performances, few works have attempted to explain the prediction of sketch classifiers. To explain the prediction of classifiers, an intuitive way is to visualize the activation maps via computing the gradients. However, visualization based explanations are constrained by several factors when directly applying them to interpret the sketch classifiers: (i) low-semantic visualization regions for human understanding. and (ii) neglecting of the inter-class correlations among distinct categories. To address these issues, we introduce a novel explanation method to interpret the decision of sketch classifiers with stroke-level evidences. Specifically, to achieve stroke-level semantic regions, we first develop a sketch parser that parses the sketch into strokes while preserving their geometric structures. Then, we design a counterfactual map generator to discover the stroke-level principal components for a specific category. Finally, based on the counterfactual feature maps, our model could explain the question of "why the sketch is classified as X" by providing positive and negative semantic explanation evidences. Experiments conducted on two public sketch benchmarks, Sketchy-COCO and TU-Berlin, demonstrate the effectiveness of our proposed model. Furthermore, our model could provide more discriminative and human understandable explanations compared with these existing works 
650 4 |a Journal Article 
700 1 |a Li, Jingzhi  |e verfasserin  |4 aut 
700 1 |a Zhang, Hua  |e verfasserin  |4 aut 
700 1 |a Xu, Long  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 21., Seite 4393-4406  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:21  |g pages:4393-4406 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3297404  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 21  |h 4393-4406