Ecosystem resilience to invasion and drought : Insights after 24 years in a rare never-grazed grassland

© 2023 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 29(2023), 20 vom: 25. Okt., Seite 5866-5880
1. Verfasser: Duniway, Michael C (VerfasserIn)
Weitere Verfasser: Finger-Higgens, Rebecca, Geiger, Erika L, Hoover, David L, Pfennigwerth, Alix A, Knight, Anna C, Van Scoyoc, Matthew, Miller, Mark, Belnap, Jayne
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Bromus tectorum Canyonlands National Park Colorado Plateau drought grassland grazing long-term monitoring resiliency
Beschreibung
Zusammenfassung:© 2023 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Understanding the resilience of ecosystems globally is hampered by the complex and interacting drivers of change characteristic of the Anthropocene. This is true for drylands of the western US, where widespread alteration of disturbance regimes and spread of invasive non-native species occurred with westward expansion during the 1800s, including the introduction of domestic livestock and spread of Bromus tectorum, an invasive non-native annual grass. In addition, this region has experienced a multi-decadal drought not seen for at least 1200 years with potentially large and interacting impacts on native plant communities. Here, we present 24 years of twice-annual plant cover monitoring (1997-2021) from a semiarid grassland never grazed by domestic livestock but subject to a patchy invasion of B. tectorum beginning in ~1994, compare our findings to surveys done in 1967, and examine potential climate drivers of plant community changes. We found a significant warming trend in the study area, with more than 75% of study year temperatures being warmer than average (1966-2021). We observed a native perennial grass community with high resilience to climate forcings with cover values like those in 1967. In invaded patches, B. tectorum cover was greatest in the early years of this study (1997-2001; ~20%-40%) but was subsequently constrained by climate and subtle variation in soils, with limited evidence of long-term impacts to native vegetation, contradicting earlier studies. Our ability to predict year-to-year variation in functional group and species cover with climate metrics varied, with a 12-month integrated index and fall and winter patterns appearing most important. However, declines to near zero live cover in recent years in response to regional drought intensification leave questions regarding the resiliency of intact grasslands to ongoing aridification and whether the vegetation observations reported here may be a leading indicator of impending change in this protected ecosystem
Beschreibung:Date Completed 20.09.2023
Date Revised 31.10.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.16882