LEADER 01000caa a22002652 4500
001 NLM359894801
003 DE-627
005 20240521234029.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/cobi.14151  |2 doi 
028 5 2 |a pubmed24n1414.xml 
035 |a (DE-627)NLM359894801 
035 |a (NLM)37489269 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Travers, Samantha K  |e verfasserin  |4 aut 
245 1 4 |a The importance of expert selection when identifying threatened ecosystems 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2023 
500 |a Date Revised 20.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 Society for Conservation Biology. 
520 |a Identifying threatened ecosystem types is fundamental to conservation and management decision-making. When identification relies on expert judgment, decisions are vulnerable to inconsistent outcomes and can lack transparency. We elicited judgements of the occurrence of a widespread, critically endangered Australian ecosystem from a diverse pool of 83 experts. We asked 4 questions. First, how many experts are required to reliably conclude that the ecosystem is present? Second, how many experts are required to build a reliable model for predicting ecosystem presence? Third, given expert selection can narrow the range opinions, if enough experts are selected, do selection strategies affect model predictions? Finally, does a diverse selection of experts provide better model predictions? We used power and sample size calculations with a finite population of 200 experts to calculate the number of experts required to reliably assess ecosystem presence in a theoretical scenario. We then used boosted regression trees to model expert elicitation of 122 plots based on real-world data. For a reliable consensus (90% probability of correctly identifying presence and absence) in a relatively certain scenario (85% probability of occurrence), at least 17 experts were required. More experts were required when occurrence was less certain, and fewer were needed if permissible error rates were relaxed. In comparison, only ∼20 experts were required for a reliable model that could predict for a range of scenarios. Expert selection strategies changed modeled outcomes, often overpredicting presence and underestimating uncertainty. However, smaller but diverse pools of experts produced outcomes similar to a model built from all contributing experts. Combining elicited judgements from a diverse pool of experts in a model-based decision support tool provided an efficient aggregation of a broad range of expertise. Such models can improve the transparency and consistency of conservation and management decision-making, especially when ecosystems are defined based on complex criteria 
650 4 |a Journal Article 
650 4 |a boosted regression trees 
650 4 |a bosques de boj 
650 4 |a box gum woodland 
650 4 |a comunidad ecológica en peligro crítico 
650 4 |a consulta de expertos 
650 4 |a critically endangered ecological community 
650 4 |a ecosistema en peligro 
650 4 |a endangered ecosystems 
650 4 |a evidence-based management 
650 4 |a expert elicitation 
650 4 |a expert selection 
650 4 |a juicio experto estructurado 
650 4 |a manejo basado en evidencias 
650 4 |a selección de expertos 
650 4 |a structured expert judgement 
650 4 |a árboles de regresión reforzada 
700 1 |a Dorrough, Josh  |e verfasserin  |4 aut 
700 1 |a Shannon, Ian  |e verfasserin  |4 aut 
700 1 |a Val, James  |e verfasserin  |4 aut 
700 1 |a Scott, Mitchell L  |e verfasserin  |4 aut 
700 1 |a Moutou, Claudine J  |e verfasserin  |4 aut 
700 1 |a Oliver, Ian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Conservation biology : the journal of the Society for Conservation Biology  |d 1999  |g 37(2023), 6 vom: 20. Dez., Seite e14151  |w (DE-627)NLM098176803  |x 1523-1739  |7 nnns 
773 1 8 |g volume:37  |g year:2023  |g number:6  |g day:20  |g month:12  |g pages:e14151 
856 4 0 |u http://dx.doi.org/10.1111/cobi.14151  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2023  |e 6  |b 20  |c 12  |h e14151