Solution Processed Semi-Transparent Organic Solar Cells Over 50% Visible Transmittance Enabled by Silver Nanowire Electrode with Sandwich Structure

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 46 vom: 01. Nov., Seite e2305092
1. Verfasser: Sun, Shaoming (VerfasserIn)
Weitere Verfasser: Zha, Wusong, Tian, Chenyang, Wei, Zhixiang, Luo, Qun, Ma, Chang-Qi, Liu, Wuyue, Zhu, Xiaozhang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article flexible solar cells light utilization efficiency semi-transparent organic photovoltaics silver nanowires electrode solution process
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Photovoltaic windows with easy installation for the power supply of household appliances have long been a desire of energy researchers. However, due to the lack of top electrodes that offer both high transparency and low sheet resistance, the development of high-transparency photovoltaic windows for indoor lighting scenarios has lagged significantly behind photovoltaic windows where privacy issues are involved. Addressing this issue, this work develops a solution-processable transparent top electrode using sandwich structure silver nanowires, realizing high transparency in semi-transparent organic solar cells. The wettability and conducting properties of the electrode are improved by a modified hole-transport layer named HP. The semi-transparent solar cell exhibits good see-through properties at a high average visible transmittance of 50.8%, with power conversion efficiency of 7.34%, and light utilization efficiency of 3.73%, which is the highest without optical modulations. Moreover, flexible devices based on the above-mentioned architecture also show excellent mechanical tolerance compared with Ag electrode counterparts, which retains 94.5% of their original efficiency after 1500 bending cycles. This work provides a valuable approach for fabricating solution-processed high transparency organic solar cells, which is essential in future applications in building integrated photovoltaics
Beschreibung:Date Revised 16.11.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202305092