|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM359804276 |
003 |
DE-627 |
005 |
20231226081647.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202302749
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1199.xml
|
035 |
|
|
|a (DE-627)NLM359804276
|
035 |
|
|
|a (NLM)37480170
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Brites, Carlos D S
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Spotlight on Luminescence Thermometry
|b Basics, Challenges, and Cutting-Edge Applications
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.09.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Boltzmann thermometers
|
650 |
|
4 |
|a biased sensing
|
650 |
|
4 |
|a energy transfer
|
650 |
|
4 |
|a luminescence (nano)thermometry
|
650 |
|
4 |
|a machine learning
|
700 |
1 |
|
|a Marin, Riccardo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Suta, Markus
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Carneiro Neto, Albano N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ximendes, Erving
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jaque, Daniel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Carlos, Luís D
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 36 vom: 20. Sept., Seite e2302749
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:36
|g day:20
|g month:09
|g pages:e2302749
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202302749
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 36
|b 20
|c 09
|h e2302749
|