Stability of aerobic granular sludge for treating inorganic wastewater with different nitrogen loading rates

This paper investigated the effect of nitrogen loading rates (NLRs) on the stability of aerobic granular sludge (AGS) for treating simulated ionic rare earth mine wastewater with high ammonia nitrogen and extremely low organic content. Mature AGS from a sequencing batch reactor (SBR) was seeded into...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 45(2024), 19 vom: 08. Juli, Seite 3898-3911
1. Verfasser: Zeng, Mingjing (VerfasserIn)
Weitere Verfasser: Li, Zhenghao, Cheng, Yuanyuan, Luo, Yi, Hou, Yiran, Wu, Junfeng, Long, Bei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Aerobic granular sludge endogenous denitrification inorganic wastewater nitrogen loading rate stability Nitrogen N762921K75 Sewage Wastewater Water Pollutants, Chemical
Beschreibung
Zusammenfassung:This paper investigated the effect of nitrogen loading rates (NLRs) on the stability of aerobic granular sludge (AGS) for treating simulated ionic rare earth mine wastewater with high ammonia nitrogen and extremely low organic content. Mature AGS from a sequencing batch reactor (SBR) was seeded into five identical SBRs (R1, R2, R3, R4 and R5). The five reactors were operated with different NLRs (0.2, 0.4, 0.8, 1.2 and 1.6 kg/m3·d). After 30 days of operation, R1, R2 and R5 were dominated by broken granules, while most of the granules in R3 and R4 still maintained a complete structure. The properties of granules from R1, R2, R3, R4 and R5 deteriorated to varying degrees, while the granules from R3 and R4 showed better stability than that from R1, R2 and R5. In R1, R2, R3 and R4, the steady-state ammonia nitrogen removal efficiencies were all greater than 90%, and the steady-state removal efficiencies of total inorganic nitrogen (TIN) were approximately 30%. In R5, the removal efficiencies of ammonia nitrogen and TIN were both approximately 70%. The dominant nitrifying and denitrifying bacterial genera of the granules from the five reactors were Nitrosomonas and Thauera, respectively, and their relative abundance was much higher in granules from R3 and R4. The results demonstrated that a relative equilibrium between the growth and metabolism of nitrifying/denitrifying bacteria was achieved when NLR was between 0.8 and 1.2 kg/m3·d, which could provide technical support for the stability maintenance of AGS in the treatment of ionic rare earth mine wastewater
Beschreibung:Date Completed 16.07.2024
Date Revised 16.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1479-487X
DOI:10.1080/09593330.2023.2237656