High-Density Integration of Ultrabright OLEDs on a Miniaturized Needle-Shaped CMOS Backplane

© 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 20 vom: 19. Mai, Seite e2300578
1. Verfasser: Hillebrandt, Sabina (VerfasserIn)
Weitere Verfasser: Moon, Chang-Ki, Taal, Adriaan J, Overhauser, Henry, Shepard, Kenneth L, Gather, Malte C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article aluminum contacts implants optogenetics organic light‐emitting diodes reactive ion etching shanks
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
Direct deposition of organic light-emitting diodes (OLEDs) on silicon-based complementary metal-oxide-semiconductor (CMOS) chips has enabled self-emissive microdisplays with high resolution and fill-factor. Emerging applications of OLEDs in augmented and virtual reality (AR/VR) displays and in biomedical applications, e.g., as brain implants for cell-specific light delivery in optogenetics, require light intensities orders of magnitude above those found in traditional displays. Further requirements often include a microscopic device footprint, a specific shape and ultrastable passivation, e.g., to ensure biocompatibility and minimal invasiveness of OLED-based implants. In this work, up to 1024 ultrabright, microscopic OLEDs are deposited directly on needle-shaped CMOS chips. Transmission electron microscopy and energy-dispersive X-ray spectroscopy are performed on the foundry-provided aluminum contact pads of the CMOS chips to guide a systematic optimization of the contacts. Plasma treatment and implementation of silver interlayers lead to ohmic contact conditions and thus facilitate direct vacuum deposition of orange- and blue-emitting OLED stacks leading to micrometer-sized pixels on the chips. The electronics in each needle allow each pixel to switch individually. The OLED pixels generate a mean optical power density of 0.25 mW mm-2, corresponding to >40 000 cd m-2, well above the requirement for daylight AR applications and optogenetic single-unit activation in the brain
Beschreibung:Date Revised 16.05.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202300578