Balancing Biases and Preserving Privacy on Balanced Faces in the Wild

There are demographic biases present in current facial recognition (FR) models. To measure these biases across different ethnic and gender subgroups, we introduce our Balanced Faces in the Wild (BFW) dataset. This dataset allows for the characterization of FR performance per subgroup. We found that...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 19., Seite 4365-4377
1. Verfasser: Robinson, Joseph P (VerfasserIn)
Weitere Verfasser: Qin, Can, Henon, Yann, Timoner, Samson, Fu, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM35967562X
003 DE-627
005 20250305013659.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3282837  |2 doi 
028 5 2 |a pubmed25n1198.xml 
035 |a (DE-627)NLM35967562X 
035 |a (NLM)37467097 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Robinson, Joseph P  |e verfasserin  |4 aut 
245 1 0 |a Balancing Biases and Preserving Privacy on Balanced Faces in the Wild 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.08.2023 
500 |a Date Revised 09.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a There are demographic biases present in current facial recognition (FR) models. To measure these biases across different ethnic and gender subgroups, we introduce our Balanced Faces in the Wild (BFW) dataset. This dataset allows for the characterization of FR performance per subgroup. We found that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results. Additionally, performance within subgroups often varies significantly from the global average. Therefore, specific error rates only hold for populations that match the validation data. To mitigate imbalanced performances, we propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks. This scheme boosts the average performance and preserves identity information while removing demographic knowledge. Removing demographic knowledge prevents potential biases from affecting decision-making and protects privacy by eliminating demographic information. We explore the proposed method and demonstrate that subgroup classifiers can no longer learn from features projected using our domain adaptation scheme. For access to the source code and data, please visit https://github.com/visionjo/facerec-bias-bfw 
650 4 |a Journal Article 
700 1 |a Qin, Can  |e verfasserin  |4 aut 
700 1 |a Henon, Yann  |e verfasserin  |4 aut 
700 1 |a Timoner, Samson  |e verfasserin  |4 aut 
700 1 |a Fu, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 19., Seite 4365-4377  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:19  |g pages:4365-4377 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3282837  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 19  |h 4365-4377