A Memorizing and Generalizing Framework for Lifelong Person Re-Identification

In this paper, we introduce a challenging yet practical setting for person re-identification (ReID) task, named lifelong person re-identification (LReID), which aims to continuously train a ReID model across multiple domains and the trained model is required to generalize well on both seen and unsee...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 11 vom: 11. Nov., Seite 13567-13585
1. Verfasser: Pu, Nan (VerfasserIn)
Weitere Verfasser: Zhong, Zhun, Sebe, Nicu, Lew, Michael S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM359675506
003 DE-627
005 20231226081400.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3297058  |2 doi 
028 5 2 |a pubmed24n1198.xml 
035 |a (DE-627)NLM359675506 
035 |a (NLM)37467084 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pu, Nan  |e verfasserin  |4 aut 
245 1 2 |a A Memorizing and Generalizing Framework for Lifelong Person Re-Identification 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we introduce a challenging yet practical setting for person re-identification (ReID) task, named lifelong person re-identification (LReID), which aims to continuously train a ReID model across multiple domains and the trained model is required to generalize well on both seen and unseen domains. It is therefore critical to learn a ReID model that can learn a generalized representation without forgetting knowledge of seen domains. In this paper, we propose a new MEmorizing and GEneralizing framework (MEGE) for LReID, which can jointly prevent the model from forgetting and improve its generalization ability. Specifically, our MEGE is composed of two novel modules, i.e., Adaptive Knowledge Accumulation (AKA) and differentiable Ranking Consistency Distillation (RCD). Taking inspiration from the cognitive processes in the human brain, we endow AKA with two special capacities, knowledge representation and knowledge operation by graph convolution networks. AKA can effectively mitigate catastrophic forgetting on seen domains while improving the generalization ability to unseen domains. By considering the ranking factor that is specifically important in ReID, RCD is designed to distill the ranking knowledge in a differentiable manner, which can further prevent the catastrophic forgetting. To supporting the study of LReID, we build a new and large-scale benchmark with two practical evaluation protocols that consider the metrics of non-forgetting and generalization. Experiments demonstrate that 1) our MEGE framework can effectively improve the performance on seen and unseen domains under the domain-incremental learning constraint, and that 2) the proposed MEGE outperforms state-of-the-art competitors by large margins 
650 4 |a Journal Article 
700 1 |a Zhong, Zhun  |e verfasserin  |4 aut 
700 1 |a Sebe, Nicu  |e verfasserin  |4 aut 
700 1 |a Lew, Michael S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 11 vom: 11. Nov., Seite 13567-13585  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:11  |g day:11  |g month:11  |g pages:13567-13585 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3297058  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 11  |b 11  |c 11  |h 13567-13585