A hybrid machine-learning approach for analysis of methane hydrate formation dynamics in porous media with synchrotron CT imaging

open access.

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 30(2023), Pt 5 vom: 01. Sept., Seite 978-988
1. Verfasser: Fokin, Mikhail I (VerfasserIn)
Weitere Verfasser: Nikitin, Viktor V, Duchkov, Anton A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article X-ray micro-computed tomography gas hydrates hybrid machine-learning segmentation image quantitative analysis
LEADER 01000naa a22002652 4500
001 NLM359674348
003 DE-627
005 20231226081359.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600577523005635  |2 doi 
028 5 2 |a pubmed24n1198.xml 
035 |a (DE-627)NLM359674348 
035 |a (NLM)37466970 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fokin, Mikhail I  |e verfasserin  |4 aut 
245 1 2 |a A hybrid machine-learning approach for analysis of methane hydrate formation dynamics in porous media with synchrotron CT imaging 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a open access. 
520 |a Fast multi-phase processes in methane hydrate bearing samples pose a challenge for quantitative micro-computed tomography study and experiment steering due to complex tomographic data analysis involving time-consuming segmentation procedures. This is because of the sample's multi-scale structure, which changes over time, low contrast between solid and fluid materials, and the large amount of data acquired during dynamic processes. Here, a hybrid approach is proposed for the automatic segmentation of tomographic data from time-resolved imaging of methane gas-hydrate formation in sandy granular media, which includes a deep-learning 3D U-Net model. To prepare a training dataset for the 3D U-Net, a technique to automate data labeling based on sample-specific information about the mineral matrix immobility and occasional fluid movement in pores is proposed. Automatic segmentation allowed for studying properties of the hydrate growth in pores, as well as dynamic processes such as incremental flow and redistribution of pore brine. Results of the quantitative analysis showed that for typical gas-hydrate stability parameters (100 bar methane pressure, 7°C temperature) the rate of formation is slow (less than 1% per hour), after which the surface area of contact between brine and gas increases, resulting in faster formation (2.5% per hour). Hydrate growth reaches the saturation point after 11 h of the experiment. Finally, the efficacy of the proposed segmentation scheme in on-the-fly automatic data analysis and experiment steering with zooming to regions of interest is demonstrated 
650 4 |a Journal Article 
650 4 |a X-ray micro-computed tomography 
650 4 |a gas hydrates 
650 4 |a hybrid machine-learning segmentation 
650 4 |a image quantitative analysis 
700 1 |a Nikitin, Viktor V  |e verfasserin  |4 aut 
700 1 |a Duchkov, Anton A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of synchrotron radiation  |d 1994  |g 30(2023), Pt 5 vom: 01. Sept., Seite 978-988  |w (DE-627)NLM09824129X  |x 1600-5775  |7 nnns 
773 1 8 |g volume:30  |g year:2023  |g number:Pt 5  |g day:01  |g month:09  |g pages:978-988 
856 4 0 |u http://dx.doi.org/10.1107/S1600577523005635  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_40 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2005 
951 |a AR 
952 |d 30  |j 2023  |e Pt 5  |b 01  |c 09  |h 978-988