Enhanced degradation of reactive black 5 via persulfate activation by natural bornite : influencing parameters, mechanism and degradation pathway

Reactive black 5 (RBk5) is a refractory azo dye that constitutes a serious threat to the environment and humans. Herein, natural bornite (Nbo) was utilized to activate persulfate (PDS) for the RBk5 removal. The particle size of the Nbo catalyst was optimized and the RBk5 degradation rate constant th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 45(2024), 20 vom: 01. Juli, Seite 3961-3973
1. Verfasser: Zhang, Hongmin (VerfasserIn)
Weitere Verfasser: Wang, Xudong, Zhao, Xiaochen, Dong, Yonghao, Wang, Wanying, Lv, Yongtao, Cao, Shumiao, Wang, Lei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Bornite mechanism persulfate reactive black 5 synergistic effect Sulfates Naphthalenesulfonates Remazol black B O0HDY58362 mehr... Water Pollutants, Chemical Reactive Oxygen Species Soot
Beschreibung
Zusammenfassung:Reactive black 5 (RBk5) is a refractory azo dye that constitutes a serious threat to the environment and humans. Herein, natural bornite (Nbo) was utilized to activate persulfate (PDS) for the RBk5 removal. The particle size of the Nbo catalyst was optimized and the RBk5 degradation rate constant that responded positively to the particle size of the Nbo catalyst was exhibited. Then, the operational factors affecting RBk5 removal were comprehensively investigated. With the addition of 1.5 g L-1 Nbo and 1.5 mM PDS, 99.05% of the RBk5 (20 mg L-1) was removed in 150 min compared with 0.46% removal with PDS only, which was caused by the additional reactive oxygen species (ROS) produced by the synergistic action of Fe-Cu bimetallic metal and reductive sulfur species. The Nbo catalyst presented high stability and reusability toward RBk5 removal. Identification of reactive oxygen species revealed that SO4⋅-, ·OH, O2⋅- and 1O2 collectively participated in RBk5 removal. Additionally, a possible degradation pathway for RBk5 was proposed, including cleavage of the azo, C-S and S-O bonds, hydroxylation, hydrolyzation, direct oxidation and other pathways. This work developed a highly effective and low-cost natural mineral-based bimetallic sulfide material for PDS activation for the degradation of contaminants and environmental remediation
Beschreibung:Date Completed 23.07.2024
Date Revised 23.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1479-487X
DOI:10.1080/09593330.2023.2237660