Optimized differential thermal analysis sheds light on the effect of temperature on peach floral bud cold hardiness and transition from endo- to ecodormancy

Copyright © 2023 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 335(2023) vom: 01. Okt., Seite 111791
1. Verfasser: Sterle, David G (VerfasserIn)
Weitere Verfasser: Caspari, Horst W, Minas, Ioannis S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Bud break Chilling satisfaction Cold damage Dormancy Lethal temperature Low temperature exotherm (LTE) Oxidative browning Prunus persica Water 059QF0KO0R
LEADER 01000caa a22002652c 4500
001 NLM359522769
003 DE-627
005 20250305011326.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plantsci.2023.111791  |2 doi 
028 5 2 |a pubmed25n1198.xml 
035 |a (DE-627)NLM359522769 
035 |a (NLM)37451549 
035 |a (PII)S0168-9452(23)00208-X 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sterle, David G  |e verfasserin  |4 aut 
245 1 0 |a Optimized differential thermal analysis sheds light on the effect of temperature on peach floral bud cold hardiness and transition from endo- to ecodormancy 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.08.2023 
500 |a Date Revised 31.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2023 Elsevier B.V. All rights reserved. 
520 |a The greatest threat to profitable peach production is cold damage to reproductive tissues. To better understand and mitigate cold damage in peach accurate and efficient assessment of floral bud cold hardiness (Hc) is critical. Differential thermal analysis (DTA) was optimized for efficient and precise detection of low-temperature exotherms (LTE) created by the freezing of supercooled intracellular water in peach floral primordia to determine Hc weekly during the dormant season. DTA-estimated lethal temperatures (LT) were validated against the standard oxidative browning method (OB) and in situ field damage following three freezing events. Chilling (0-7.2 °C) accumulation tracked throughout the dormant season to determine DTA-related changes across dormancy phase transitions. LTEs showed rapid acclimation of 'Redhaven' peach floral buds following the first frost of the dormant season (Tmin=-6.8 °C on November 18, 2016) and maintained similar Hc levels for 45 days through maximum Hc (LT50 =-23.9 °C recorded on January 9, 2017) and until the accumulation of 868 chilling hours was reached. Following this milestone, a significant 55% loss of LTEs upon the accumulation of the first growing degree day (Tbase=7 °C) was recoded on February 7, 2017. An LTE recovery approach, pre-exposing buds to a non-freezing low temperature (-2°C) for a period of 12 h, more than doubled the number of LTEs detected for another 27 days extending DTA use for LT prediction. The results presented herein confirm that the use of DTA is efficient and accurate to determine Hc in peach floral buds, and suggest that the LTE loss in early spring may be a signature response related to the shift from endo- into ecodormancy following two environmental temperature cues, chilling satisfaction and the first heat accumulation post chilling satisfaction 
650 4 |a Journal Article 
650 4 |a Bud break 
650 4 |a Chilling satisfaction 
650 4 |a Cold damage 
650 4 |a Dormancy 
650 4 |a Lethal temperature 
650 4 |a Low temperature exotherm (LTE) 
650 4 |a Oxidative browning 
650 4 |a Prunus persica 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Caspari, Horst W  |e verfasserin  |4 aut 
700 1 |a Minas, Ioannis S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant science : an international journal of experimental plant biology  |d 1985  |g 335(2023) vom: 01. Okt., Seite 111791  |w (DE-627)NLM098174193  |x 1873-2259  |7 nnas 
773 1 8 |g volume:335  |g year:2023  |g day:01  |g month:10  |g pages:111791 
856 4 0 |u http://dx.doi.org/10.1016/j.plantsci.2023.111791  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 335  |j 2023  |b 01  |c 10  |h 111791