|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM359490751 |
003 |
DE-627 |
005 |
20250305010841.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202303728
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1197.xml
|
035 |
|
|
|a (DE-627)NLM359490751
|
035 |
|
|
|a (NLM)37448332
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Xule
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Reinforcing Hydrogel by Nonsolvent-Quenching-Facilitated In Situ Nanofibrosis
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.10.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Nanofibrous hydrogels are pervasive in load-bearing soft tissues, which are believed to be key to their extraordinary mechanical properties. Enlighted by this phenomenon, a novel reinforcing strategy for polymeric hydrogels is proposed, where polymer segments in the hydrogels are induced to form nanofibers in situ by bolstering their controllable aggregation at the nanoscale level. Poly(vinyl alcohol) hydrogels are chosen to demonstrate the virtue of this strategy. A nonsolvent-quenching step is introduced into the conventional solvent-exchange hydrogel preparation approach, which readily promotes the formation of nanofibrous hydrogels in the following solvent-tempering process. The resultant nanofibrous hydrogels demonstrate significantly improved mechanical properties and swelling resistance, compared to the conventional solvent-exchange hydrogels with identical compositions. This work validates the hypothesis that bundling polymer chains to form nanofibers can lead to nanofibrous hydrogels with remarkably enhanced mechanical performances, which may open a new horizon for single-component hydrogel reinforcement
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a isotropic nanofibrosis
|
650 |
|
4 |
|a nanofibrous hydrogels
|
650 |
|
4 |
|a nonsolvent-quenching and solvent-tempering
|
650 |
|
4 |
|a poly(vinyl alcohol)
|
650 |
|
4 |
|a solvent-exchanges
|
650 |
|
4 |
|a strong and tough
|
650 |
|
4 |
|a swelling resistance
|
700 |
1 |
|
|a Xu, Liju
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Chen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Jilin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Meng, Xiaohui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qiu, Dong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 42 vom: 14. Okt., Seite e2303728
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:42
|g day:14
|g month:10
|g pages:e2303728
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202303728
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 42
|b 14
|c 10
|h e2303728
|