Unsupervised Deep Exemplar Colorization via Pyramid Dual Non-Local Attention

Exemplar-based colorization is a challenging task, which attempts to add colors to the target grayscale image with the aid of a reference color image, so as to keep the target semantic content while with the reference color style. In order to achieve visually plausible chromatic results, it is impor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 13., Seite 4114-4127
1. Verfasser: Wang, Hanzhang (VerfasserIn)
Weitere Verfasser: Zhai, Deming, Liu, Xianming, Jiang, Junjun, Gao, Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM359411932
003 DE-627
005 20231226080820.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3293777  |2 doi 
028 5 2 |a pubmed24n1197.xml 
035 |a (DE-627)NLM359411932 
035 |a (NLM)37440402 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Hanzhang  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Deep Exemplar Colorization via Pyramid Dual Non-Local Attention 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Exemplar-based colorization is a challenging task, which attempts to add colors to the target grayscale image with the aid of a reference color image, so as to keep the target semantic content while with the reference color style. In order to achieve visually plausible chromatic results, it is important to sufficiently exploit the global color style and the semantic color information of the reference color image. However, existing methods are either clumsy in exploiting the semantic color information, or lack of the dedicated fusion mechanism to decorate the target grayscale image with the reference semantic color information. Besides, these methods usually use a single-stage encoder-decoder architecture, which results in the loss of spatial details. To remedy these problems, we propose an effective exemplar colorization strategy based on pyramid dual non-local attention network to exploit the long-range dependency as well as multi-scale correlation. Specifically, two symmetrical branches of pyramid non-local attention block are tailored to achieve alignments from the target feature to the reference feature and from the reference feature to the target feature respectively. The bidirectional non-local fusion strategy is further applied to get a sufficient fusion feature that achieves full semantic consistency between multi-modal information. To train the network, we propose an unsupervised learning manner, which employs the hybrid supervision including the pseudo paired supervision from the reference color images and unpaired supervision from both the target grayscale and reference color images. Extensive experimental results are provided to demonstrate that our method achieves better photo-realistic colorization performance than the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Zhai, Deming  |e verfasserin  |4 aut 
700 1 |a Liu, Xianming  |e verfasserin  |4 aut 
700 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
700 1 |a Gao, Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 13., Seite 4114-4127  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:13  |g pages:4114-4127 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3293777  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 13  |h 4114-4127