Collaborative Content-Dependent Modeling : A Return to the Roots of Salient Object Detection

Salient object detection (SOD) aims to identify the most visually distinctive object(s) from each given image. Most recent progresses focus on either adding elaborative connections among different convolution blocks or introducing boundary-aware supervision to help achieve better segmentation, which...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 13., Seite 4237-4246
1. Verfasser: Jiao, Siyu (VerfasserIn)
Weitere Verfasser: Goel, Vidit, Navasardyan, Shant, Yang, Zongxin, Khachatryan, Levon, Yang, Yi, Wei, Yunchao, Zhao, Yao, Shi, Humphrey
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM35941186X
003 DE-627
005 20231226080820.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3293759  |2 doi 
028 5 2 |a pubmed24n1197.xml 
035 |a (DE-627)NLM35941186X 
035 |a (NLM)37440395 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiao, Siyu  |e verfasserin  |4 aut 
245 1 0 |a Collaborative Content-Dependent Modeling  |b A Return to the Roots of Salient Object Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Salient object detection (SOD) aims to identify the most visually distinctive object(s) from each given image. Most recent progresses focus on either adding elaborative connections among different convolution blocks or introducing boundary-aware supervision to help achieve better segmentation, which is actually moving away from the essence of SOD, i.e., distinctiveness/salience. This paper goes back to the roots of SOD and investigates the principles of how to identify distinctive object(s) in a more effective and efficient way. Intuitively, the salience of one object should largely depend on its global context within the input image. Based on this, we devise a clean yet effective architecture for SOD, named Collaborative Content-Dependent Networks (CCD-Net). In detail, we propose a collaborative content-dependent head whose parameters are conditioned on the input image's global context information. Within the content-dependent head, a hand-crafted multi-scale (HMS) module and a self-induced (SI) module are carefully designed to collaboratively generate content-aware convolution kernels for prediction. Benefited from the content-dependent head, CCD-Net is capable of leveraging global context to detect distinctive object(s) while keeping a simple encoder-decoder design. Extensive experimental results demonstrate that our CCD-Net achieves state-of-the-art results on various benchmarks. Our architecture is simple and intuitive compared to previous solutions, resulting in competitive characteristics with respect to model complexity, operating efficiency, and segmentation accuracy 
650 4 |a Journal Article 
700 1 |a Goel, Vidit  |e verfasserin  |4 aut 
700 1 |a Navasardyan, Shant  |e verfasserin  |4 aut 
700 1 |a Yang, Zongxin  |e verfasserin  |4 aut 
700 1 |a Khachatryan, Levon  |e verfasserin  |4 aut 
700 1 |a Yang, Yi  |e verfasserin  |4 aut 
700 1 |a Wei, Yunchao  |e verfasserin  |4 aut 
700 1 |a Zhao, Yao  |e verfasserin  |4 aut 
700 1 |a Shi, Humphrey  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 13., Seite 4237-4246  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:13  |g pages:4237-4246 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3293759  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 13  |h 4237-4246