The efficient design of Nested Group Testing algorithms for disease identification in clustered data

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 50(2023), 10 vom: 15., Seite 2228-2245
Auteur principal: Best, Ana F (Auteur)
Autres auteurs: Malinovsky, Yaakov, Albert, Paul S
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Journal of applied statistics
Sujets:Journal Article clustered data disease identification group testing pooled sample analysis prevalence heterogeneity
LEADER 01000caa a22002652c 4500
001 NLM359354785
003 DE-627
005 20250305004811.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2071419  |2 doi 
028 5 2 |a pubmed25n1197.xml 
035 |a (DE-627)NLM359354785 
035 |a (NLM)37434628 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Best, Ana F  |e verfasserin  |4 aut 
245 1 4 |a The efficient design of Nested Group Testing algorithms for disease identification in clustered data 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.09.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with substantially fewer tests than the population size. Substantial research has identified efficient designs under this paradigm. However, little work has focused on the important problem of disease screening among clustered data, such as geographic heterogeneity in HIV prevalence. We evaluated designs where we first estimate disease prevalence and then apply efficient group testing algorithms using these estimates. Specifically, we evaluate prevalence using individual testing on a fixed-size subset of each cluster and use these prevalence estimates to choose group sizes that minimize the corresponding estimated average number of tests per subject. We compare designs where we estimate cluster-specific prevalences as well as a common prevalence across clusters, use different group testing algorithms, construct groups from individuals within and in different clusters, and consider misclassification. For diseases with low prevalence, our results suggest that accounting for clustering is unnecessary. However, for diseases with higher prevalence and sizeable between-cluster heterogeneity, accounting for clustering in study design and implementation improves efficiency. We consider the practical aspects of our design recommendations with two examples with strong clustering effects: (1) Identification of HIV carriers in the US population and (2) Laboratory screening of anti-cancer compounds using cell lines 
650 4 |a Journal Article 
650 4 |a clustered data 
650 4 |a disease identification 
650 4 |a group testing 
650 4 |a pooled sample analysis 
650 4 |a prevalence heterogeneity 
700 1 |a Malinovsky, Yaakov  |e verfasserin  |4 aut 
700 1 |a Albert, Paul S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 10 vom: 15., Seite 2228-2245  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:50  |g year:2023  |g number:10  |g day:15  |g pages:2228-2245 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2071419  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 10  |b 15  |h 2228-2245