|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM359342760 |
003 |
DE-627 |
005 |
20250305004619.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202303818
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1197.xml
|
035 |
|
|
|a (DE-627)NLM359342760
|
035 |
|
|
|a (NLM)37433306
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Zeping
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Titania-Supported Cu-Single-Atom Catalyst for Electrochemical Reduction of Acetylene to Ethylene at Low-Concentrations with Suppressed Hydrogen Evolution
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.10.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Electrochemical acetylene reduction (EAR) is a promising strategy for removing acetylene from ethylene-rich gas streams. However, suppressing the undesirable hydrogen evolution is vital for practical applications in acetylene-insufficient conditions. Herein, Cu single atoms are immobilized on anatase TiO2 nanoplates (Cu-SA/TiO2 ) for electrochemical acetylene reduction, achieving an ethylene selectivity of ≈97% with a 5 vol% acetylene gas feed (Ar balance). At the optimal Cu-single-atom loading, Cu-SA/TiO2 is able to effectively suppress HER and ethylene over-hydrogenation even when using dilute acetylene (0.5 vol%) or ethylene-rich gas feeds, delivering a 99.8% acetylene conversion, providing a turnover frequency of 8.9 × 10-2 s-1 , which is superior to other EAR catalysts reported to date. Theoretical calculations show that the Cu single atoms and the TiO2 support acted cooperatively to promote charge transfer to adsorbed acetylene molecules, whilst also inhibiting hydrogen generation in alkali environments, thus allowing selective ethylene production with negligible hydrogen evolution at low acetylene concentrations
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a electrochemical acetylene reduction
|
650 |
|
4 |
|a ethylene purification
|
650 |
|
4 |
|a semi-hydrogenation
|
650 |
|
4 |
|a single-atom catalysts
|
650 |
|
4 |
|a water dissociation
|
700 |
1 |
|
|a Shang, Lu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Hongzhou
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Yunxuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Waterhouse, Geoffrey I N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Dong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Run
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Tierui
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 42 vom: 11. Okt., Seite e2303818
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:42
|g day:11
|g month:10
|g pages:e2303818
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202303818
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 42
|b 11
|c 10
|h e2303818
|