ABC-Norm Regularization for Fine-Grained and Long-Tailed Image Classification

Image classification for real-world applications often involves complicated data distributions such as fine-grained and long-tailed. To address the two challenging issues simultaneously, we propose a new regularization technique that yields an adversarial loss to strengthen the model learning. Speci...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 11., Seite 3885-3896
1. Verfasser: Hsu, Yen-Chi (VerfasserIn)
Weitere Verfasser: Hong, Cheng-Yao, Lee, Ming-Sui, Geiger, Davi, Liu, Tyng-Luh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM359337961
003 DE-627
005 20231226080646.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3273455  |2 doi 
028 5 2 |a pubmed24n1197.xml 
035 |a (DE-627)NLM359337961 
035 |a (NLM)37432822 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hsu, Yen-Chi  |e verfasserin  |4 aut 
245 1 0 |a ABC-Norm Regularization for Fine-Grained and Long-Tailed Image Classification 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.07.2023 
500 |a Date Revised 18.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image classification for real-world applications often involves complicated data distributions such as fine-grained and long-tailed. To address the two challenging issues simultaneously, we propose a new regularization technique that yields an adversarial loss to strengthen the model learning. Specifically, for each training batch, we construct an adaptive batch prediction (ABP) matrix and establish its corresponding adaptive batch confusion norm (ABC-Norm). The ABP matrix is a composition of two parts, including an adaptive component to class-wise encode the imbalanced data distribution, and the other component to batch-wise assess the softmax predictions. The ABC-Norm leads to a norm-based regularization loss, which can be theoretically shown to be an upper bound for an objective function closely related to rank minimization. By coupling with the conventional cross-entropy loss, the ABC-Norm regularization could introduce adaptive classification confusion and thus trigger adversarial learning to improve the effectiveness of model learning. Different from most of state-of-the-art techniques in solving either fine-grained or long-tailed problems, our method is characterized with its simple and efficient design, and most distinctively, provides a unified solution. In the experiments, we compare ABC-Norm with relevant techniques and demonstrate its efficacy on several benchmark datasets, including (CUB-LT, iNaturalist2018); (CUB, CAR, AIR); and (ImageNet-LT), which respectively correspond to the real-world, fine-grained, and long-tailed scenarios 
650 4 |a Journal Article 
700 1 |a Hong, Cheng-Yao  |e verfasserin  |4 aut 
700 1 |a Lee, Ming-Sui  |e verfasserin  |4 aut 
700 1 |a Geiger, Davi  |e verfasserin  |4 aut 
700 1 |a Liu, Tyng-Luh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 11., Seite 3885-3896  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:11  |g pages:3885-3896 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3273455  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 11  |h 3885-3896