|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM359226582 |
003 |
DE-627 |
005 |
20231226080425.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202302512
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1197.xml
|
035 |
|
|
|a (DE-627)NLM359226582
|
035 |
|
|
|a (NLM)37421606
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Siyuan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Linker Engineering of Sandwich-Structured Metal-Organic Framework Composites for Optimized Photocatalytic H2 Production
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.09.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a While the microenvironment around catalytic sites is recognized to be crucial in thermocatalysis, its roles in photocatalysis remain subtle. In this work, a series of sandwich-structured metal-organic framework (MOF) composites, UiO-66-NH2 Pt@UiO-66-X (X means functional groups), is rationally constructed for visible-light photocatalytic H2 production. By varying the ─X groups of the UiO-66-X shell, the microenvironment of the Pt sites and photosensitive UiO-66-NH2 core can be simultaneously modulated. Significantly, the MOF composites with identical light absorption and Pt loading present distinctly different photocatalytic H2 production rates, following the ─X group sequence of ─H > ─Br > ─NA (naphthalene) > ─OCH3 > ─Cl > ─NO2 . UiO-66-NH2 @Pt@UiO-66-H demonstrates H2 production rate up to 2708.2 µmol g-1 h-1 , ≈222 times that of UiO-66-NH2 @Pt@UiO-66-NO2 . Mechanism investigations suggest that the variation of the ─X group can balance the charge separation of the UiO-66-NH2 core and the proton reduction ability of Pt, leading to an optimal activity of UiO-66-NH2 @Pt@UiO-66-H at the equilibrium point
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a hydrogen production
|
650 |
|
4 |
|a linker engineering
|
650 |
|
4 |
|a metal-organic frameworks
|
650 |
|
4 |
|a photocatalysis
|
700 |
1 |
|
|a Ai, Zhiwen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Niu, Xinwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Weijie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kang, Rong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Zhongyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Waseem, Amir
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiao, Long
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Hai-Long
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 39 vom: 20. Sept., Seite e2302512
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:39
|g day:20
|g month:09
|g pages:e2302512
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202302512
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 39
|b 20
|c 09
|h e2302512
|