|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM359194699 |
003 |
DE-627 |
005 |
20231226080345.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2023.3290515
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1197.xml
|
035 |
|
|
|a (DE-627)NLM359194699
|
035 |
|
|
|a (NLM)37418403
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Xin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Cross-Camera Trajectories Help Person Retrieval in a Camera Network
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 13.07.2023
|
500 |
|
|
|a Date Revised 18.07.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We are concerned with retrieving a query person from multiple videos captured by a non-overlapping camera network. Existing methods often rely on purely visual matching or consider temporal constraints but ignore the spatial information of the camera network. To address this issue, we propose a pedestrian retrieval framework based on cross-camera trajectory generation that integrates both temporal and spatial information. To obtain pedestrian trajectories, we propose a novel cross-camera spatio-temporal model that integrates pedestrians' walking habits and the path layout between cameras to form a joint probability distribution. Such a cross-camera spatio-temporal model can be specified using sparsely sampled pedestrian data. Based on the spatio-temporal model, cross-camera trajectories can be extracted by the conditional random field model and further optimised by restricted non-negative matrix factorization. Finally, a trajectory re-ranking technique is proposed to improve the pedestrian retrieval results. To verify the effectiveness of our method, we construct the first cross-camera pedestrian trajectory dataset, the Person Trajectory Dataset, in real surveillance scenarios. Extensive experiments verify the effectiveness and robustness of the proposed method
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Xie, Xiaohua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lai, Jianhuang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Wei-Shi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 32(2023) vom: 07., Seite 3806-3820
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2023
|g day:07
|g pages:3806-3820
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2023.3290515
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2023
|b 07
|h 3806-3820
|