Interactive Volume Visualization via Multi-Resolution Hash Encoding Based Neural Representation

Implicit neural networks have demonstrated immense potential in compressing volume data for visualization. However, despite their advantages, the high costs of training and inference have thus far limited their application to offline data processing and non-interactive rendering. In this article, we...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 01. Juli, Seite 5404-5418
1. Verfasser: Wu, Qi (VerfasserIn)
Weitere Verfasser: Bauer, David, Doyle, Michael J, Ma, Kwan-Liu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM35919463X
003 DE-627
005 20240703232337.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3293121  |2 doi 
028 5 2 |a pubmed24n1458.xml 
035 |a (DE-627)NLM35919463X 
035 |a (NLM)37418398 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Qi  |e verfasserin  |4 aut 
245 1 0 |a Interactive Volume Visualization via Multi-Resolution Hash Encoding Based Neural Representation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Implicit neural networks have demonstrated immense potential in compressing volume data for visualization. However, despite their advantages, the high costs of training and inference have thus far limited their application to offline data processing and non-interactive rendering. In this article, we present a novel solution that leverages modern GPU tensor cores, a well-implemented CUDA machine learning framework, an optimized global-illumination-capable volume rendering algorithm, and a suitable acceleration data structure to enable real-time direct ray tracing of volumetric neural representations. Our approach produces high-fidelity neural representations with a peak signal-to-noise ratio (PSNR) exceeding 30 dB, while reducing their size by up to three orders of magnitude. Remarkably, we show that the entire training step can fit within a rendering loop, bypassing the need for pre-training. Additionally, we introduce an efficient out-of-core training strategy to support extreme-scale volume data, making it possible for our volumetric neural representation training to scale up to terascale on a workstation with an NVIDIA RTX 3090 GPU. Our method significantly outperforms state-of-the-art techniques in terms of training time, reconstruction quality, and rendering performance, making it an ideal choice for applications where fast and accurate visualization of large-scale volume data is paramount 
650 4 |a Journal Article 
700 1 |a Bauer, David  |e verfasserin  |4 aut 
700 1 |a Doyle, Michael J  |e verfasserin  |4 aut 
700 1 |a Ma, Kwan-Liu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 8 vom: 01. Juli, Seite 5404-5418  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:8  |g day:01  |g month:07  |g pages:5404-5418 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3293121  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 8  |b 01  |c 07  |h 5404-5418