|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM35918829X |
003 |
DE-627 |
005 |
20231226080337.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/jpy.13356
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1197.xml
|
035 |
|
|
|a (DE-627)NLM35918829X
|
035 |
|
|
|a (NLM)37417760
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Findinier, Justin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Chlamydomonas
|b Fast tracking from genomics
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.08.2023
|
500 |
|
|
|a Date Revised 11.08.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Journal of Phycology published by Wiley Periodicals LLC on behalf of Phycological Society of America.
|
520 |
|
|
|a Elucidating biological processes has relied on the establishment of model organisms, many of which offer advantageous features such as rapid axenic growth, extensive knowledge of their physiological features and gene content, and the ease with which they can be genetically manipulated. The unicellular green alga Chlamydomonas reinhardtii has been an exemplary model that has enabled many scientific breakthroughs over the decades, especially in the fields of photosynthesis, cilia function and biogenesis, and the acclimation of photosynthetic organisms to their environment. Here, we discuss recent molecular/technological advances that have been applied to C. reinhardtii and how they have further fostered its development as a "flagship" algal system. We also explore the future promise of this alga in leveraging advances in the fields of genomics, proteomics, imaging, and synthetic biology for addressing critical future biological issues
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Chlamydomonas
|
650 |
|
4 |
|a genetic manipulation
|
650 |
|
4 |
|a genomics
|
650 |
|
4 |
|a microalgae
|
650 |
|
4 |
|a ultrastructure
|
700 |
1 |
|
|a Grossman, Arthur R
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of phycology
|d 1966
|g 59(2023), 4 vom: 24. Aug., Seite 644-652
|w (DE-627)NLM098182994
|x 1529-8817
|7 nnns
|
773 |
1 |
8 |
|g volume:59
|g year:2023
|g number:4
|g day:24
|g month:08
|g pages:644-652
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/jpy.13356
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_72
|
912 |
|
|
|a GBV_ILN_176
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 59
|j 2023
|e 4
|b 24
|c 08
|h 644-652
|