Machine learning for image-based multi-omics analysis of leaf veins

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 74(2023), 17 vom: 13. Sept., Seite 4928-4941
1. Verfasser: Zhang, Yubin (VerfasserIn)
Weitere Verfasser: Zhang, Ning, Chai, Xiujuan, Sun, Tan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Review Journal Article Research Support, Non-U.S. Gov't Deep learning enviromics analysis growth prediction model image analysis multi-omics analysis phenotype omics vein network
LEADER 01000naa a22002652 4500
001 NLM359119409
003 DE-627
005 20231226080214.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erad251  |2 doi 
028 5 2 |a pubmed24n1197.xml 
035 |a (DE-627)NLM359119409 
035 |a (NLM)37410807 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Yubin  |e verfasserin  |4 aut 
245 1 0 |a Machine learning for image-based multi-omics analysis of leaf veins 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.09.2023 
500 |a Date Revised 18.09.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. 
520 |a Veins are a critical component of the plant growth and development system, playing an integral role in supporting and protecting leaves, as well as transporting water, nutrients, and photosynthetic products. A comprehensive understanding of the form and function of veins requires a dual approach that combines plant physiology with cutting-edge image recognition technology. The latest advancements in computer vision and machine learning have facilitated the creation of algorithms that can identify vein networks and explore their developmental progression. Here, we review the functional, environmental, and genetic factors associated with vein networks, along with the current status of research on image analysis. In addition, we discuss the methods of venous phenotype extraction and multi-omics association analysis using machine learning technology, which could provide a theoretical basis for improving crop productivity by optimizing the vein network architecture 
650 4 |a Review 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Deep learning 
650 4 |a enviromics analysis 
650 4 |a growth prediction model 
650 4 |a image analysis 
650 4 |a multi-omics analysis 
650 4 |a phenotype omics 
650 4 |a vein network 
700 1 |a Zhang, Ning  |e verfasserin  |4 aut 
700 1 |a Chai, Xiujuan  |e verfasserin  |4 aut 
700 1 |a Sun, Tan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 74(2023), 17 vom: 13. Sept., Seite 4928-4941  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:74  |g year:2023  |g number:17  |g day:13  |g month:09  |g pages:4928-4941 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erad251  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 74  |j 2023  |e 17  |b 13  |c 09  |h 4928-4941